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FIG. 3. The impact of the improved treatment of the ki-
netic decoupling on the relic density for parameter points that
would satisfy the relic density constraint in the standard ap-
proach (dotted line in Fig. 1), both for the minimal (solid)
and maximal (dashed) scenario for scattering with quarks.
The numerical result (‘full BE’) implements minimal quark
scattering; note that this does not take into account the e↵ect
of DM self-interactions (while the other curves are consistent
with assuming a maximal self-scattering rate). The green
dashed curve shows the impact of implementing the elastic
scattering term in the highly non-relativistic limit, c.f. Eq. (5).

scattering rate being proportional to the Yukawa cou-
pling squared, which favours scattering with Boltzmann-
suppressed heavy fermions. We note that the latter point
also explains the relatively large di↵erence between the
two extreme quark scattering scenarios used here for il-
lustration (in scenario ‘B’, the largest Yukawa couplings
do not contribute to the scattering).

In order to emphasize the importance of our improved
treatment of the decoupling history, we plot in Fig. 3
also the ratio of the resulting relic density to that of the
standard approach (for parameter values satisfying the
relic density constraint for the latter, i.e. corresponding
to the blue dashed curve in Fig. 1). Let us stress that,
compared to the observational uncertainty in this quan-
tity of about 1%, these corrections are by no means small
even in the minimal scattering scenario ‘A’. In the same
figure, we also compare our result for the coupled sys-
tem of Boltzmann equations (27) and (28) to the full
numerical solution of the Boltzmann equation in phase
space, as described in Section IIC (black dots). Before
getting back to these results, let us briefly comment on
the green dashed line in Fig. 3, which implements the
highly non-relativistic scattering term Cel of Eq. (5), and
hence not the replacement (35) in Eq. (28) which we oth-
erwise adopt as our default. Clearly, the impact of this
choice is very limited for this approach. We note that
the quantitative importance of the relativistic correction
term proportional to hp

4
/E

3
i in Eq. (28) lies in the same

ballpark, a↵ecting the relic density by at most ⇠10% in
the region very close to the resonance (and below the

percent-level elsewhere).
In Appendix A we discuss in depth the time evolution

of both the coupled Boltzmann equations and the full
phase-space density in the resonance region. Let us here
just mention that the characteristic features of the curves
displayed in Figs. 2 and 3 can indeed all more or less
directly be understood in terms of the highly enhanced
annihilation rate in a relatively narrow kinematic region
around the resonance,

p
s ⇠ mh ± �h. As the full nu-

merical solution reveals, furthermore, the shape of f�(p)
can in some cases be quite di↵erent from the Maxwell-
Boltzmann form (34) that is consistent with the coupled
system of Boltzmann equations (27) and (28). Whether
this has a noticeable impact on the resulting relic den-
sity (like for mS ⇠ 57GeV) or not (like for mS ⇠ mh/2)
again mostly depends on whether or not the shape is af-
fected for those momenta that can combine to

p
s ⇠ mh

during chemical freeze-out.
For illustration, we pick a DM mass of mS = 57GeV

and show in Fig. 4 the full phase-space distribution for
a few selected values of x (left panel) as well as the rele-
vant evolution of Y and y (right panel). For models with
DM masses in this range, the relatively large di↵erence
between full solution and coupled equations (as visible in
Fig. 3) can mostly be understood in terms of the dip in
the ratio of DM phase-space distributions at intermedi-
ate values of q = p/T that starts to develop for x & 20.
Concretely, the fact that the actual distribution for those
momenta is slightly suppressed compared to a distribu-
tion fully characterized only by its second moment, as in
Eq. (34), causes the DM particles to annihilate less ef-
ficiently, h�vineq < h�vi, because this is the momentum
range probed by the resonance for these x values. This
in turn leads to the DM particles falling out of chemical
equilibrium earlier, and hence a larger asymptotic value
of Y . The reason for this momentum suppression to de-
velop in the first place is also to be found in the particu-
larly e�cient annihilation close to the resonance, which
leads to a depletion of DM particles with corresponding
momenta because the scattering rate is no longer su�-
ciently large to redistribute the phase-space distribution
to a thermal shape. We note that the bulk part of this
e↵ect is actually well captured by the coupled Boltzmann
system, c.f. the dashed vs. solid lines in the right panel
of Fig. 4. For further details, we refer again to Appendix
A.

IV. DISCUSSION

From the above discussion, we have learned that very
early kinetic decoupling is not just a theoretical possi-
bility. It can appear in simple WIMP models, like the
Scalar Singlet case, and a↵ect the DM relic density in a
significant way. We note that the size of the latter ef-
fect is, as expected, directly related to the size of the
momentum exchange rate and hence to just how early
kinetic decoupling happens compared to chemical decou-


