IMPACT OF SELF-SCATTERING ON DARK MATTER RELIC DENSITY

Andrzej Hryczuk

家NCBJbased on:
A.H. \& M. Laletin 2204.07078
and T. Binder, T. Bringmann, M. Gustafsson \& A.H. 1706.07433, 2103.01944

In CASE YOU’RE NOT INTERESTED IN WHAT FOLLOWS...

In CASE YOU’RE NOT INTERESTED IN WHAT FOLLOWS...

In CASE YOU’RE NOT INTERESTED IN WHAT FOLLOWS...

In CASE YOU’RE NOT INTERESTED IN WHAT FOLLOWS...

In CASE YOU’RE NOT INTERESTED IN WHAT FOLLOWS...

In CASE YOU’RE NOT INTERESTED IN WHAT FOLLOWS...

In CASE YOU’RE NOT INTERESTED IN WHAT FOLLOWS...

Thermal Relic Density STANDARD SCENARIO

DM in full equilibrium chemical decoupling
freeze-out
kinetic decoupling

Thermal Relic Density STANDARD SCENARIO

time evolution of $f_{\chi}(p)$ in kinetic theory:

$$
\left.E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right)\right] f_{\chi}=\mathcal{C}\left[f_{\chi}\right]
$$

Thermal ReLic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\mathcal{C}\left[f_{\chi}\right]
$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...
for derivation from thermal QFT see e.g., | 409.3049

Thermal Relic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$
\begin{aligned}
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) & f_{\chi}=\mathcal{C}\left[f_{\chi}\right] \\
& -\bigvee_{(\text {i.e. take oth moment })}^{\text {integrate over } p} \\
\frac{d n_{\chi}}{d t}+3 H n_{\chi}= & -\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} \sigma_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}\left(n_{\chi} n_{\bar{\chi}}-n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}\right)
\end{aligned}
$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...
..for derivation from thermal QFT see e.g., 1409.3049
where the thermally averaged cross section:
$\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}=-\frac{h_{\chi}^{2}}{n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}} f_{\chi}^{\mathrm{eq}} f_{\bar{\chi}}^{\mathrm{eq}}$

Thermal Relic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\mathcal{C}\left[f_{\chi}\right] \quad \begin{gathered}
\text { *assumptions for using Boltzmann eq: } \\
\text { classical limit, molecular chaos,... }
\end{gathered}
$$

) integrate over p integrate over p
(i.e. take $0^{\text {th }}$ moment)
.for derivation from thermal QFT see e.g., I 409.3049

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} \sigma_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}\left(n_{\chi} n_{\bar{\chi}}-n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}\right)
$$

where the thermally averaged cross section:
$\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}=-\frac{h_{\chi}^{2}}{n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}} f_{\chi}^{\mathrm{eq}} f_{\bar{\chi}}^{\mathrm{eq}}$

Fig.: Jungman, Kamionkowski \& Griest, PR'9t

Thermal ReLic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\mathcal{C}\left[f_{\chi}\right]
$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...
.for derivation from thermal QFT see e.g., I409.3049

Critical assumption:

kinetic equilibrium at chemical decoupling

$$
f_{\chi} \sim a(T) f_{\chi}^{\mathrm{eq}}
$$

Fig.: Jungman, Kamionkowski \& Griest, PR'9t

Freeze-out vs. Decoupling

annihilation

$$
\sum_{\text {spins }}\left|\mathcal{M}^{\text {pair }}\right|^{2}=F\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right)
$$

Boltzmann suppression of DM vs.SM $\quad \Rightarrow$
(elastic) scattering

$\sim \quad \sum_{\text {spins }}\left|\mathcal{M}^{\text {scatt }}\right|^{2}=F\left(k,-k^{\prime}, p^{\prime},-p\right)$
scatterings typically more frequent dark matter frozen-out but typically still kinetically coupled to the plasma

Schmid, Schwarz, Widern '99; Green, Hofmann, Schwarz ’05

Early Kinetic Decoupling?

A necessary and sufficient condition: scatterings weaker than annihilation i.e. rates around freeze-out: $H \sim \Gamma_{\mathrm{ann}} \gtrsim \Gamma_{\mathrm{el}}$

Possibilities:

B) Boltzmann suppression of SM as strong as for DM
e.g., below threshold annihilation (forbidden-like DM)
C) Scatterings and annihilation have different structure
e.g., semi-annihilation, 3 to 2 models,...
D) Multi-component dark sectors

How To Go beyond Kinetic equilibrium?

All information is in the full BE: both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\mathcal{C}\left[f_{\chi}\right]
$$ contains both scatterings and annihilations

solve numerically for full $f_{\chi}(p)$
have insight on the distribution
no constraining assumptions
numerically challenging
often an overkill

consider system of equations for moments of $f_{\chi}(p)$
partially analytic/much easier numerically manifestly captures all of the relevant physics
finite range of validity
no insight on the distribution

NEW TOOL! GOING BEYOND THE STANDARD APPROACH

- Home
- Downloads
- Contact

DRAKE奚

Dark matter Relic Abundance beyond Kinetic Equilibrium

Authors: Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk
DRAKE is a numerical precision tool for predicting the dark matter relic abundance also in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. The code comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution. The code is written in Wolfram Language and includes a Mathematica notebook example program, a template script for terminal usage with the free Wolfram Engine, as well as several concrete example models.
DRAKE is a free software licensed under GPL3.

If you use DRAKE for your scientific publications, please cite

- DRAKE: Dark matter Relic Abundance beyond Kinetic Equilibrium, Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk, [arXiv:2103.01944]

Currently, an user guide can be found in the Appendix A of this reference.
Please cite also quoted other works applying for specific cases.
v1.0 « Click here to download DRAKE

Applications:

DM relic density for any (user defined) model*

Interplay between chemical and kinetic decoupling

Prediction for the DM phase space distribution

Late kinetic decoupling and impact on cosmology
see e.g., I 202.5456 https: / / drake.hepforge.org

Few words AbOUT THE CODE

written in Wolfram Language, lightweight, modular and simple to use both via script and front end usage

Input: model file (few models implemented, user extendable), parameter values and settings choices

DRAKEAK https: / / drake.hepforge.org

FEW WORDS ABOUT THE CODE

written in Wolfram Language, lightweight, modular and simple to use both via script and front end usage
 https: / / drake.hepforge.org

Few words AbOUT THE CODE

written in Wolfram Language, lightweight, modular and simple to use both via script and front end usage

Few words AbOUT THE CODE

written in Wolfram Language, lightweight, modular and simple to use both via script and front end usage

Dark matter Relic Abundance beyond Kinetic Equilibrium
https: / / drake.hepforge.org

Few words AbOUT THE CODE

written in Wolfram Language, lightweight, modular and simple to use both via script and front end usage

Example A: Scalar Singlet DM

Example A

SCALAR SINGLET DM

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

$$
\mathcal{L}_{S}=\frac{1}{2} \partial_{\mu} S \partial^{\mu} S-\frac{1}{2} \mu_{S}^{2} S^{2}-\frac{1}{2} \lambda_{s} S^{2}|H|^{2} \quad m_{s}=\sqrt{\mu_{S}^{2}+\frac{1}{2} \lambda_{s} v_{0}^{2}}
$$

Most of the parameter space excluded, but... even such a simple model is hard to kill \rightarrow best fit point hides in the resonance region!

RESULTS

EFFECT ON THE Ωh^{2}

effect on relic density: up to $\mathrm{O}(\sim 10)$

[... Freeze-out at few $\mathrm{GeV} \longrightarrow$ what is the abundance of heavy quarks in QCD plasma?
QCD $=\mathrm{A}$ - all quarks are free and present in the plasma down to $\mathrm{T}_{\mathrm{c}}=154 \mathrm{MeV}$ $\mathrm{QCD}=\mathrm{B}$ - only light quarks contribute to scattering and only down to $4 \mathrm{~T}_{\mathrm{c}}$

WHICH IS MORE ACCURATE?!

They correspond to the opposite limits of self-interaction strengths:

WHICH IS MORE ACCURATE?!

They correspond to the opposite limits of self-interaction strengths:

inefficient - fBE

Which limit is closer to reality depends on the model, but it seems that fBE is typically more accurate, unless self-scattering is tuned up, e.g:

```
coupling to the mediator;
```

governs self-scatterings

WHICH IS MORE ACCURATE?!

They correspond to the opposite limits of self-interaction strengths:

Which limit is closer to reality depends on the model, but it seems that fBE is typically more accurate, unless self-scattering is tuned up, e.g:

Example D: When additional influx of DM arrives

D) Multi-component dark sectors

Sudden injection of more DM particles distorts $f_{\chi}(p)$
(e.g. from a decay or annihilation of other states)

- this can modify the annihilation rate (if still active)
- how does the thermalization due to elastic scatterings happen?

2)

DM annihilation has a threshold
e.g. $\chi \bar{\chi} \rightarrow f \bar{f}$ with $m_{\chi} \lesssim m_{f}$
2)

DM annihilation has a threshold
e.g. $\chi \bar{\chi} \rightarrow f \bar{f}$ with $m_{\chi} \lesssim m_{f}$

I) DM produced via: | Ist component from thermal freeze-out |
| :--- |
| 2nd component from a decay $\phi \rightarrow \bar{\chi} \chi$ |

2)

DM annihilation has a threshold e.g. $\chi \bar{\chi} \rightarrow f \bar{f}$ with $m_{\chi} \lesssim m_{f}$

2)

DM annihilation has a threshold e.g. $\chi \bar{\chi} \rightarrow f \bar{f}$ with $m_{\chi} \lesssim m_{f}$

I)

DM produced via:

Ist component from thermal freeze-out
2nd component from a decay $\phi \rightarrow \bar{\chi} \chi$
2)

> DM annihilation has a threshold
> e.g. $\chi \bar{\chi} \rightarrow f \bar{f}$ with $m_{\chi} \lesssim m_{f}$

2)

DM annihilation has a threshold
e.g. $\chi \bar{\chi} \rightarrow f \bar{f}$ with $m_{\chi} \lesssim m_{f}$
$Y \sim$ number density

2)

> DM annihilation has a threshold e.g. $\chi \bar{\chi} \rightarrow f \bar{f}$ with $m_{\chi} \lesssim m_{f}$

EXAMPLE EVOLUTION

I)
DM produced via:
Ist component from thermal freeze-out
2nd component from a decay $\phi \rightarrow \bar{\chi} \chi$
2)

> DM annihilation has a threshold e.g. $\chi \bar{\chi} \rightarrow f \bar{f}$ with $m_{\chi} \lesssim m_{f}$
$Y \sim$ number density

$y \sim$ temperature

$p^{2} f(p) \sim$ momentum distribution

Summary

I. Kinetic equilibrium is a necessary (often implicit) assumption for standard relic density calculations in all the numerical tools...
...while it is not always warranted!
2. Much more accurate treatment comes from solving the full phase space Boltzmann equation (fBE) to obtain result for $f_{\mathrm{DM}}(p)$ where one can study also self-thermalization from self-scatterings
3. Introduced DRAKE迆: a new tool to extend the current capabilities to the regimes beyond kinetic equilibrium
4. Multi-component sectors, when studied at the fBE level, can reveal quite unexpected behavior

