Early Kinetic Decoupling of DM

WHEN THE STANDARD WAY OF CALCULATING
THE THERMAL RELIC DENSITY FAILS

Andrzej Hryczuk
 University of Oslo

based on: T. Binder, T. Bringmann, M. Gustafsson and AH, Phys.Rev. D96 (2017) II50IO, astro-ph.co/I706.07433 + work in progress

Motivation
 Thermal Relic Density

Theory:

I. Natural

Comes out automatically from the expansion of the Universe
Naturally leads to cold DM

II. Predictive

No dependence on initial conditions
Fixes coupling(s) \Rightarrow signal in DD, ID \& LHC
III. It is not optional

Overabundance constraint
To avoid it one needs quite significant deviations from standard cosmology

Experiment:

.. as a constraint:

. . as a target:

"(...) besides the Higgs boson mass measurement and LHC direct bounds, the constraint showing by far the strongest impact on the parameter space of the MSSM is the relic
density"
Roszkowski et al. 'I 4

Motivation Thermal Relic Density

Theory:

I. Natural

Comes out automatically from the
expansion of the Universe
Naturally leads to cold DM

II. Predictive

No dependence on initial conditions
Fixes coupling $(s) \Rightarrow$ signal in DD, ID \& LHC
III. It is not optional

Overabundance constraint
To avoid it one needs quite significant deviations from standard cosmology

Experiment:

... as a constraint:

... as a target:

"(...) besides the Higgs boson mass measurement and LHC direct bounds, the constraint showing by far the strongest impact on the parameter space of the MSSM is the relic density"

Roszkowski et al.' 14
... as a pin:
When a dark matter signal is (finally) found: relic abundance can pin-point the particle physics interpretation

Thermal Relic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\mathcal{C}\left[f_{\chi}\right]
$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...
.for derivation from thermal QFT see e.g., |409.3049

Thermal Relic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$
\begin{aligned}
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) & f_{\chi}=\mathcal{C}\left[f_{\chi}\right] \\
& -\begin{array}{c}
\text { integrate over } p \\
\text { (i.e. take oth moment) }
\end{array} \\
\frac{d n_{\chi}}{d t}+3 H n_{\chi}= & -\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} \sigma_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}\left(n_{\chi} n_{\bar{\chi}}-n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}\right)
\end{aligned}
$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...
..for derivation from thermal QFT see e.g., 1409.3049
where the thermally averaged cross section:
$\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}=-\frac{h_{\chi}^{2}}{n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}} f_{\chi}^{\mathrm{eq}} f_{\bar{\chi}}^{\mathrm{eq}}$

Thermal Relic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$
\begin{aligned}
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) & f_{\chi}=\mathcal{C}\left[f_{\chi}\right] \\
& \searrow \begin{array}{c}
\text { integrate over } p \\
\text { (i. take ot. moment) }
\end{array} \\
\frac{d n_{\chi}}{d t}+3 H n_{\chi}= & -\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} \sigma_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}\left(n_{\chi} n_{\bar{\chi}}-n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}\right)
\end{aligned}
$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...
.for derivation from thermal QFT see e.g., I 409.3049
where the thermally averaged cross section:
$\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}=-\frac{h_{\chi}^{2}}{n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}} f_{\chi}^{\mathrm{eq}} f_{\bar{\chi}}^{\mathrm{eq}}$

Fig.: Jungman, Kamionkowski \& Griest, PR'96

Thermal Relic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:
$E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\mathcal{C}\left[f_{\chi}\right]$
) integrate over p
(ie. take $0^{\text {th }}$ moment)
$\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} \sigma_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}\left(n_{\chi} n_{\bar{\chi}}-n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}\right)$
where the thermally averaged cross section:
$\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}=-\frac{h_{\chi}^{2}}{n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}} f_{\chi}^{\mathrm{eq}} f_{\bar{\chi}}^{\mathrm{eq}}$

Critical assumption:

kinetic equilibrium at chemical decoupling

$$
f_{\chi} \sim a(\mu) f_{\chi}^{\mathrm{eq}}
$$

Fig.: Jungman, Kamionkowski \& Griest, PR'96

Thermal Relic Density "EXCEPTIONS"

I. Three "exceptions"

Griest, Seckel '9 |
2. Non-standard cosmology
many works... very recent e.g., D'Eramo, Fernandez, Profumo 'I 7
3. Second era of annihilation

Feng et al.' 10 ; Bringmann et al. ' $12 ; \ldots$
4. Bound State Formation
recent e.g., Petraki at al.'I5,'I6; An et al.' ${ }^{\prime}$ 5,' ${ }^{\prime}$ 6; Cirelli et al.'I6; ...
5. $3 \rightarrow 2$ and $4 \rightarrow 2$ annihilation
e.g., D'Agnolo, Ruderman 'I5; Cline at al.' 17 ; Choi at al. ' $17 ; ~ . .$.
6. Semi-annihilation/Cannibalization

D'Eramo, Thaler 'I0; ... e.g., Kuflik et al.' ${ }^{\prime}$ I5; Pappadopulo et al. ' $16 ; \ldots$
7. Conversion driven/Co-scattering

Garny, Heisig, Lulf, Vogl 'I7 D'Agnolo, Pappadopulo, Ruderman 'I7
8. ...

In other words: whenever studying non-minimal scenarios "exceptions" appear but most of them come from interplay of new added effects, while do not affect the foundations of modern calculations

What If NON-MINIMAL SCENARIO?

Example: assume two particles in the dark sector: A and B

	$c_{0}^{-o^{n}}$	${ }_{s} u e^{e^{-}}$	$C_{0}^{d^{e^{c}}}$			$\left\langle 0^{r b^{j}}\right.$
annihilation A A $<->$ SM SM A B <-> SM SM B B <-> SM SM						
conversion $A A \leftrightarrow B B$ inelastic scattering A SM <-> B SM						
elastic scattering $\begin{aligned} & \text { A SM <-> A SM } \\ & \text { B SM <-> B SM } \end{aligned}$						
el. self-scattering $\begin{aligned} & A A \ll A A \\ & B B \Leftrightarrow B B \end{aligned}$						
decays A <-> B SM A <-> SM SM B <-> SM SM						
$\begin{gathered} \text { semi-ann/3->2 } \\ \text { A A A }<->\text { A A } \\ \text { A A }<->\text { A B } \\ \text { A A A }<->\text { SM A } \end{gathered}$						

What IF NON-MINIMAL SCENARIO?

Example: assume two particles in the dark sector: A and B

$\cos _{\operatorname{cog}_{g_{5}}}$	$\operatorname{com}^{10 m^{\circ}}$	ser	$0^{0^{006}}$		unsm	40
$\begin{aligned} & \text { elastic scattering } \\ & \text { A SM <-> A SM } \\ & \text { B SM <-> B SM } \end{aligned}$	${ }_{\text {asemen }}^{\substack{\text { ascmed to } \\ \text { befficent }}}$					

What IF NON-MINIMAL SCENARIO?

Example: assume two particles in the dark sector: A and B

Freeze-out vs. Decoupling

$$
\sum_{\text {spins }}\left|\mathcal{M}^{\text {pair }}\right|^{2}=F\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right)
$$

Boltzmann suppression of DM vs. SM
(elastic) scattering

$\sum_{\text {spins }}\left|\mathcal{M}^{\text {scatt }}\right|^{2}=F\left(k,-k^{\prime}, p^{\prime},-p\right)$
scatterings typically more frequent dark matter frozen-out but typically still kinetically coupled to the plasma

$$
\tau_{\mathrm{r}}\left(T_{\mathrm{kd}}\right) \equiv N_{\mathrm{coll}} / \Gamma_{\mathrm{el}} \sim H^{-1}\left(T_{\mathrm{kd}}\right)
$$

Schmid, Schwarz, Widern '99; Green, Hofmann, Schwarz '05
Two consequences:
I. During freeze-out (chemical decoupling) typically: $f_{\chi} \sim a(\mu) f_{\chi}^{\text {eq }}$
2. If kinetic decoupling much, much later: possible impact on the matter power spectrum i.e. kinetic decoupling can have observable consequences and affect e.g. missing satellites problem

Early Kinetic Decoupling?

A necessary and sufficient condition: scatterings weaker than annihilation i.e. rates around freeze-out: $H \sim \Gamma_{\text {ann }} \gtrsim \Gamma_{\text {el }}$

Possibilities:
A)

e.g., resonant annihilation
B) Boltzmann suppression of SM as strong as for DM
e.g., below threshold annihilation (forbidden-like DM)
C) Scatterings and annihilation have different structure
e.g., semi-annihilation, 3 to 2 models,...

How To Describe KD?

All information is in full BE: both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\xrightarrow{\mathcal{C}}\left[f_{\chi}\right]
$$ contains both scatterings and annihilation

Kinetic Decoupling 101

Consider general KD scenario, i.e. coupled temperature and number density evolution:
annihilation and production thermal averages done at
different T - feedback of modified y evolution

$$
\begin{aligned}
& \begin{array}{l}
\frac{Y^{\prime}}{Y}=-\frac{1-\frac{x}{3} \frac{g_{* \mathrm{~S}}^{\prime}}{g_{* \mathrm{~S}}}}{H x} s Y\left(\left.\left\langle\sigma v_{\mathrm{rel}}\right\rangle\right|_{x=m_{\chi}^{2} /\left(s^{2 / 3} y\right)}-\left.\frac{Y_{\mathrm{eq}}^{2}}{Y^{2}}\left\langle\sigma v_{\mathrm{rel}}\right\rangle\right|_{x}\right) \\
\frac{y^{\prime}}{y}=-\frac{1-\frac{x}{3} \frac{g_{* \mathrm{~S}}^{\prime}}{g_{* \mathrm{~S}}}}{H x}\left[2 m_{\chi} c(T)\left(1-\frac{y_{\mathrm{eq}}}{y}\right)-s Y\left(\left(\left\langle\sigma v_{\mathrm{rel}}\right\rangle-\left\langle\sigma v_{\mathrm{rel}}\right\rangle_{2}\right)_{x=m_{\chi}^{2} /\left(s^{2 / 3} y\right)}-\frac{Y_{\mathrm{eq}}^{2}}{Y^{2}}\left(\left\langle\sigma v_{\mathrm{rel}}\right\rangle-\frac{y_{\mathrm{eq}}}{y}\left\langle\sigma v_{\mathrm{rel}}\right\rangle_{2}\right)_{x}\right)\right]
\end{array} \\
& +\frac{1-\frac{x}{3} \frac{g_{x \mathrm{~s}}^{\prime}}{g_{* \mathrm{~s}}}}{3 m_{\chi}}\left\langle p^{4} / E^{3}\right\rangle_{x=m_{\chi}^{2} /\left(s^{2 / 3} y\right)}
\end{aligned}
$$

These equations still assume the equilibrium shape of $f_{\chi}(p)$ - but with variant temperature

Kinetic Decoupling 101

Consider general KD scenario, i.e. coupled temperature and number density evolution:
annihilation and production thermal averages done at
different T - feedback of modified y evolution

$$
\begin{aligned}
& \text { elastic scatterings term } \\
& c(T)=\frac{1}{12(2 \pi)^{3} m_{\chi}^{4} T} \sum_{X} \int d k k^{5} \omega^{-1} g^{ \pm}\left(1 \mp g^{ \pm}\right) \int_{-4 k^{2}}^{0}(-t) \frac{1}{8 k^{4}}\left|\mathcal{M}_{\mathrm{el}}\right|^{2}
\end{aligned}
$$

These equations still assume the equilibrium shape of $f_{\chi}(p)$ - but with variant temperature

Kinetic Decoupling 101

Consider general KD scenario, i.e. coupled temperature and number density evolution:
annihilation and production thermal averages done at different T - feedback of modified y evolution

These equations still assume the equilibrium shape of $f_{\chi}(p)$ - but with variant temperature
or more accurately: that the thermal averages computed with true nonequilibrium distributions don't differ much from the above ones

Numerical approach

... or one can just solve full phase space Boltzmann eq.

$$
\begin{aligned}
\partial_{x} f_{\chi}(x, q)= & \frac{m_{\chi}^{3}}{\tilde{H} x^{4}} \frac{g_{\bar{\chi}}}{2 \pi^{2}} \int d \tilde{q} \tilde{q}^{2} \frac{1}{2} \int d \cos \theta v_{\mathrm{M} \varnothing 1} \sigma_{\bar{\chi} \chi \rightarrow \bar{f} f} \\
& \times\left[f_{\chi, \mathrm{eq}}(q) f_{\chi, \mathrm{eq}}(\tilde{q})-f_{\chi}(q) f_{\chi}(\tilde{q})\right] \\
+ & \frac{2 m_{\chi} c(T)}{2 \tilde{H} x}\left[x_{q} \partial_{q}^{2}+\left(q+\frac{2 x_{q}}{q}+\frac{q}{x_{q}}\right) \partial_{q}+3\right] f_{\chi} \vdots \\
+ & \tilde{g} \frac{q}{x} \partial_{q} f_{\chi},
\end{aligned}
$$

NumERICAL APPROACH

... or one can just solve full phase space Boltzmann eq.

$$
\begin{aligned}
\partial_{x} f_{\chi}(x, q)= & \frac{m_{\chi}^{3}}{\tilde{H} x^{4}} \frac{g_{\bar{\chi}}}{2 \pi^{2}} \int d \tilde{q} \tilde{q}^{2} \frac{1}{2} \int d \cos \theta v_{\mathrm{M} \varnothing 1} \sigma_{\bar{\chi} \chi \rightarrow \bar{f} f} \\
& \times\left[f_{\chi, \mathrm{eq}}(q) f_{\chi, \mathrm{eq}}(\tilde{q})-f_{\chi}(q) f_{\chi}(\tilde{q})\right] \\
+ & \frac{2 m_{\chi} c(T)}{2 \tilde{H} x}\left[x_{q} \partial_{q}^{2}+\left(q+\frac{2 x_{q}}{q}+\frac{q}{x_{q}}\right) \partial_{q}+3\right] f_{\chi} \\
+ & \tilde{g} \frac{q}{x} \partial_{q} f_{\chi},
\end{aligned} .
$$

fully general
expanded in NR and small momentum transfer (semi-relativistic!)

$$
\frac{m_{\chi}^{3}}{\tilde{H} x^{4}} \frac{g_{\bar{\chi}}}{2 \pi^{2}} \sum_{j=1}^{N-1} \frac{\Delta \tilde{q}_{j}}{2}\left[\tilde{q}_{j}^{2}\left\langle v_{\mathrm{M} \varnothing 1} \sigma_{\bar{\chi} \chi \rightarrow \bar{f} f}\right\rangle_{i, j}^{\theta}\left(f_{i}^{\mathrm{eq}} f_{j}^{\mathrm{eq}}-f_{i} f_{j}\right)\right.
$$

Solved numerically with MatLab

Note:

can be extended to e.g. self-scatterings very stiff, care needed with numerics
discretization, ~1000 steps

$$
\partial_{x} f_{i}=
$$

$$
\left.+\tilde{q}_{j+1}^{2}\left\langle v_{\mathrm{M} \phi 1} \sigma_{\bar{\chi} \chi \rightarrow \bar{f} f}\right\rangle_{i, j+1}^{\theta}\left(f_{i}^{\mathrm{eq}} f_{j+1}^{\mathrm{eq}}-f_{i} f_{j+1}\right)\right]
$$

$$
+\frac{2 m_{\chi} c(T)}{2 \tilde{H} x}\left[x_{q, i} \partial_{q}^{2}+\left(q_{i}+\frac{2 x_{q, i}}{q_{i}}+\frac{q_{i}}{x_{q, i}}\right) \partial_{q}+3\right] f_{i}
$$

$$
+\tilde{g} \frac{q_{i}}{x} \partial_{q} f_{i}
$$

ExAMPLE \# 1:
 Scalar Singlet DM

SCALAR SINGLET DM

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

$$
\mathcal{L}_{S}=\frac{1}{2} \partial_{\mu} S \partial^{\mu} S-\frac{1}{2} \mu_{S}^{2} S^{2}-\frac{1}{2} \lambda_{s} S^{2}|H|^{2} \quad m_{s}=\sqrt{\mu_{S}^{2}+\frac{1}{2} \lambda_{s} v_{0}^{2}}
$$

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

Results
 RD CONTOURS

```
QCD = A - all quarks are free and present down to \(\mathrm{T}_{\mathrm{c}}=154 \mathrm{MeV}\)
QCD = B - only light quarks in the plasma and only down to \(4 \mathrm{~T}_{\mathrm{c}}\)
```


Significant modification of the observed relic density contour in the Scalar Singlet DM model \longrightarrow larger coupling needed \longrightarrow better chance for closing the last window

Results

EfFECT

Why such non-trivial shape of the effect of early kinetic decoupling?
\longrightarrow we'll inspect the y and Y evolution...

Results

Effect

kinetic and chemical decoupling:

ratio approaches 1 , but does not reach it!

Why such non-trivial shape of the effect of early kinetic decoupling? \longrightarrow we'll inspect the y and Y evolution...

DENSITY AND T ${ }_{\mathrm{DM}}$ EVOLUTION

Resonant annihilation most effective for low momenta
\longrightarrow DM fluid goes through "heating" phase before leaves kinetic equilibrium

DENSITY AND T ${ }_{\mathrm{DM}}$ EVOLUTION

Resonant annihilation most effective for high momenta
\longrightarrow DM fluid goes through fast "cooling" phase after that when TDM drops to much annihilation not effective anymore

FULL PHASE-SPACE EvOLUTION

FULL PHASE-SPACE EvOLUTION

More Examples:

Forbidden DM \& SEMI-ANNIHILATION

Forbidden DM

$m_{D M}=10 \mathrm{GeV}, \mathrm{m}_{S M}=\| \| \mathrm{GeV} ;|M|^{2}=$ const.

Annihilation
threshold
"heavy" SM

particle \rightarrow| velocity |
| :---: |
| dependence |

kinetic and chemical decoupling close

SEMI-ANNIHILATION
see also Cai, Spray I807.00832

Z_{3} complex scalar singlet

just above the Higgs threshold semi-annihilation dominant!
Belanger, Kannike, Pukhov, Raidal '।3

will be much larger in case with stronger v -dependnece

Forbidden DM

$$
\mathrm{m}_{\mathrm{DM}}=10 \mathrm{GeV}, \mathrm{~m}_{S M}=11 \mathrm{GeV} ;|\mathrm{M}|^{2}=\text { const. }
$$

[^0]
SEMI-ANNIHILATION
 see also Cai, Spray I807.00832

Z_{3} complex scalar singlet

just above the Higgs threshold semi-annihilation dominant!
Belanger, Kannike, Pukhov, Raidal 'I3

will be much larger in case with stronger v-dependnece
*Caveats: only CBE , numerical accuracy challenging

FORBIDDEN DM

$$
\mathrm{m}_{\mathrm{DM}}=10 \mathrm{GeV}, \mathrm{~m}_{S M}=11 \mathrm{GeV} ;|\mathrm{M}|^{2}=\text { const. }
$$

[^1]
SEMI-ANNIHILATION
 see also Cai, Spray I807.00832

Z_{3} complex scalar singlet

just above the Higgs threshold semi-annihilation dominant
Belanger, Kannike, Pukhov, Raidal 'I3

will be much larger in case with stronger v-dependnece
*Caveats: only cBE , numerical accuracy challenging

CONCLUSIONS

I. One needs to remember that kinetic equilibrium is a necessary assumption for standard relic density calculations
2. Coupled system of Boltzmann equations for 0th and 2nd moments allow for a very accurate treatment of the kinetic decoupling and its effect on relic density
3. In special cases the full phase space Boltzmann equation can be necessary - especially if one wants to trace DM temperature as well
4.A public release of the full phase space Boltzmann code coming soon

BACKUP

KD BEFORE CD?

Obvious issue:
How to define exactly the kinetic and chemical decouplings and what is the significance of such definitions?

Improved question:
Can kinetic decoupling happen much earlier than chemical?

we have already seen that even if scatterings were very inefficient compared to annihilation, departure from equilibrium for both Y and y happened around the same time...
turn off scatterings and take s-wave annihilation; look at local disturbance
annihilation/production precesses drive to restore kinetic equilibrium!

SCATTERING

The elastic scattering collision term:

$$
\begin{aligned}
& C_{\mathrm{el}}= \frac{1}{2 g_{\chi}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega} \int \frac{d^{3} \tilde{k}}{(2 \pi)^{3} 2 \tilde{\omega}} \int \frac{d^{3} \tilde{p}}{(2 \pi)^{3} 2 \tilde{E}} \\
& \times(2 \pi)^{4} \delta^{(4)}(\tilde{p}+\tilde{k}-p-k)|\mathcal{M}|_{\chi f \leftrightarrow \chi f}^{2} \\
& \times\left[\left(1 \mp g^{ \pm}\right)(\omega) g^{ \pm}(\tilde{\omega}) f_{\chi}(\tilde{\mathbf{p}})-(\omega \leftrightarrow \tilde{\omega}, \mathbf{p} \leftrightarrow \tilde{\mathbf{p}})\right] \\
& \longrightarrow \text { equilibrium functions for SM particles }
\end{aligned}
$$

Expanding in NR and small momentum transfer: ${ }_{\text {Bringmann, Hofmann }{ }^{\prime} 06}$

$$
C_{\mathrm{el}} \simeq \frac{m_{\chi}}{2} \gamma(T)\left[T m_{\chi} \partial_{p}^{2}+\left(p+2 T \frac{m_{\chi}}{p}\right) \partial_{p}+3\right] f_{\chi}
$$

More generally, Fokker-Planck scattering operator (relativistic, but still small momentum transfer): ${ }_{\text {Binder et al.' }}$ '16
physical interpretation:
scattering rate

$$
C_{\mathrm{el}} \simeq \frac{E}{2} \nabla_{\mathbf{p}} \cdot\left[\gamma(T, \mathbf{p})\left(E T \nabla_{\mathbf{p}}+\mathbf{p}\right) f_{\chi}\right]
$$

Semi-relativistic: assume that scattering $\gamma(T, \mathbf{p})$ is momentum independent

Early KD AND RESONANCE

our work wasn't the first to realize that resonant annihilation can lead to early kinetic decoupling...
Feng, Kaplinghat, Yu 'IO — noted that for Sommerfeld-type resonances KD can happen early
Dent, Dutta, Scherrer 'IO - looked at potential effect of KD on thermal relic density
Since then people were aware of this effect and sometimes tried to estimate it assuming instantaneous KD, e.g., in the case of Sommerfeld effect in the MSSM:
but no systematic studies of decoupling process were performed, until...

...models with very late KD become popular, in part to solve ,,missing satellites" problem van den Aarssen et al ' 12 ; Bringmann et al ' $16, \times 2$; Binder et al ' 16
this progress allowed for better approach to early KD scenarios as well and was applied to the resonant annihilation case in

Duch, Grządkowski 'I7
... but we developed a dedicated accurate method/code to deal with this and other similar situations

WHY SPIKES IN $\mathrm{T}_{\text {KD }}$?

Effect resembling first order ,,phase transition" artificial as dependent on a particular choice of $T_{K D}$ definition

[^0]: *Caveats: toy example, only tree level, only cBE,
 non-negligible momentum transfer in el. scatt.
 (Fokker-Planck approx. problematic)

[^1]: *Caveats: toy example, only tree level, only cBE,
 non-negligible momentum transfer in el. scatt.
 (Fokker-Planck approx. problematic)

