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I. Natural

II. Predictive
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MOTIVATION 
THERMAL RELIC DENSITY 

When a dark matter signal is (finally) found: 
relic abundance can pin-point the 

particle physics interpretation

Experiment: Theory:
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”(…) besides the Higgs boson 
mass measurement and LHC 
direct bounds, the constraint 
showing by far the strongest 
impact on the parameter space 
of the MSSM is the relic 
density”

…as a constraint:

…as a target:

…as a pin:

Roszkowski et al. ’14

Fixes coupling(s)      signal in DD, ID & LHC

No dependence on initial conditions

To avoid it one needs quite significant 
deviations from standard cosmology

Overabundance constraint

Comes out automatically from the 
expansion of the Universe

)

Naturally leads to cold DM
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Figure 3. 95% CL observed and expected exclusion regions in Mmed�mDM plane for di↵erent /E
T

based DM searches from CMS in the lepto-phobic Axial-vector model. Following the recommendation
of the LHC DM working group [1, 2], the exclusions are computed for a universal quark coupling
g
q

= 0.25 and for a DM coupling of gDM = 1.0. It should also be noted that the absolute exclusion
of the di↵erent searches as well as their relative importance, will strongly depend on the chosen
coupling and model scenario. Therefore, the exclusion regions, relic density contours, and unitarity
curve shown in this plot are not applicable to other choices of coupling values or model.
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”(…) besides the Higgs boson 
mass measurement and LHC 
direct bounds, the constraint 
showing by far the strongest 
impact on the parameter space 
of the MSSM is the relic 
density”
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Figure 7: (a) Marginalized 2D posterior distribution for the CMSSM with µ > 0 in the (m�, �
SI
p ) plane.

The red solid line shows the 90% C.L. upper bound as given by LUX, here included in the likelihood function.

The gray dot-dashed line shows the 2012 XENON100 90% C.L. bound [70] and the magenta dashed line

shows projected sensitivity for 2017 at XENON-1T [103]. (b) Marginalized 2D posterior distribution for

the CMSSM with µ > 0 in the (m�, �v) plane. The magenta dashed line shows the expected sensitivity

of CTA under the assumptions of [36] for a NFW halo profile. The magenta dot-dashed line shows the

corresponding sensitivity with Einasto profile. The dotted black line shows the projected sensitivity of the

CTA expansion considered in [104].

tool for exploration of the CMSSM.

In the CMSSM the largest cross section values, �SI

p ⇠> 10�8 pb, are obtained in the focus

point region. One can see the beginning of the horizontal branch joining the higgsino and

focus point regions, at m� ' 0.7 � 0.8TeV. The e↵ect of the LUX limit in the likelihood

is visible, as the credibility region is cut o↵ rapidly after crossing the 90% C.L. bound,

shown in red. In contrast to [16], this causes the focus point region to be disfavored by

the scan. In the µ < 0 scenario we obtain the same results albeit with the absence of the

A-resonance region. The sign of the µ parameter has little impact on �SI

p for the neutralino

and the ⇠ 1TeV higgsino region with µ < 0 can also be entirely probed by XENON-1T.

In Fig. 7(b) we show the 2D posterior distribution in the (m�, �v) plane. The node at

�v . 10�28 cm3/s is the stau-coannihilation region, which has a much reduced �v in the

present day due to the absence of co-annihilations with the stau NLSP, which are instead

only present in the early Universe. The A-resonance and ⇠ 1TeV higgsino regions are

visible at larger �v, from left to right, respectively. The A-resonance region is characterized

by a broad range of cross section values, with a deep funnel at 95% credibility that extends

down to �v ' 10�28 cm3/s. This corresponds to a large resonant e↵ect in the early Universe

when the neutralinos are distributed thermally, but the present value of �v is small since

the colliding neutralinos have insu�cient energy to produce the pseudoscalar on shell (see,

e.g., Appendix B in [31]). �v is reduced by orders of magnitude in this funnel and is
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*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

E (@t �H~p ·r~p) f� = C[f�]
Boltzmann equation for        :f�(p)
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dn�
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+ 3Hn� = �h���̄!ij�relieq
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�

Critical assumption:  
kinetic equilibrium at chemical decoupling

f� ⇠ a(µ)f eq
�
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THERMAL RELIC DENSITY  
”EXCEPTIONS”

4

1. Three ”exceptions”

2. Non-standard cosmology

3. Second era of annihilation

4. Bound State Formation

5. 3      2 and 4      2 annihilation

6. Semi-annihilation/Cannibalization

7. Conversion driven/Co-scattering

8. …

In other words: whenever studying non-minimal scenarios ”exceptions” appear — 
but most of them come from interplay of new added effects, 
while do not affect the foundations of modern calculations

recent e.g., Petraki at al. ’15, ’16;   An et al. ’15, ’16;   Cirelli et al. ’16; …

e.g., D’Agnolo, Ruderman ’15;   Cline at al. ’17;  Choi at al. ’17;  …

D’Eramo, Thaler ’10; …

Feng et al. ’10;   Bringmann et al. ’12; … 

many works… very recent e.g., D’Eramo, Fernandez, Profumo ’17

e.g., Kuflik et al. ’15;   Pappadopulo et al. ’16; … 

Griest, Seckel ’91

Garny, Heisig, Lulf,  Vogl ’17 D’Agnolo, Pappadopulo, Ruderman ’17
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A A <-> SM SM
A B <-> SM SM
B B <-> SM SM

conversion
A A <-> B B

A SM <-> B SM

A SM <-> A SM
B SM <-> B SM

elastic scattering

el. self-scattering

decays

semi-ann/3->2

inelastic scattering

A A <-> A A
B B <-> B B

A <-> B SM
A <-> SM SM
B <-> SM SM

A A A <-> A A
A A <-> A B

A A A <-> SM A

Example: assume two particles in the dark sector:  A and B

scenarioprocess
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FREEZE-OUT VS. DECOUPLING

DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

where t = q̃2 = (k − k′)2, and after summing over all the spins we get
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∣
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2
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e4

t2
× tr
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(̸k′ +me)γ
ν (̸k +me)γ

λ
)

× tr
(

(̸p′ +Mµ)γν (̸p +Mµ)γλ
)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
(

(̸k′ +me)γ
ν (̸k +me)γ

λ
)scatt

↔ − tr
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λ
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∣Mpair
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2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,
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∣Mpair
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2
= F (p1, p2, p

′

1, p
′

2) and
∑
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∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just
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crossing sym.

~

dark matter frozen-out but typically 
still kinetically coupled to the plasma

Torsten Bringmann, University of Hamburg ‒Thermal decoupling of WIMPs

Freeze-out = decoupling !

7

WIMP interactions with heat bath of SM particles:
� SM

SM SM SM�

� �

(annihilation) (scattering)

n�Boltzmann suppression of 
scattering processes much more frequent
continue even after chemical decoupling (“freeze-out”) at Tcd � m�/25

Kinetic decoupling much later:
Random walk in 
momentum space
� Ncoll � m�/T

Schmid, Schwarz, & Widerin,  PRD ’99; Green, Hofmann & Schwarz, JCAP ’05, ...

�r(Tkd) � Ncoll/�el ⇥ H�1(Tkd)

Boltzmann suppression of DM vs. SM scatterings typically more frequent)

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

f� ⇠ a(µ)f eq
�

Two consequences:

1. During freeze-out (chemical decoupling) typically:
2. If kinetic decoupling much, much later: possible impact on the matter power spectrum

i.e. kinetic decoupling can have observable consequences and affect e.g. missing satellites problem
see e.g., Bringmann, Ihle, Karsten, Walia ’16 6



EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:

vrel�VV =
�2
s

s

8⇡
�
V

v
V

|D
h

(s)|2(1� 4x+ 12x2) , (13)

where x ⌘ M2
V

/s, vV =
p
1� 4x and �

W

= 1, �
Z

= 1
2 and |D

h

(s)|2 is defined in eq. (9).
Fermion final states:

vrel�f f̄ =
�2
s

m2
f

4⇡
Xfv

3
f |Dh

(s)|2 , (14)

where vf =
p

1� 4m2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

X
q

= 3

"
1 +

 
3

2
log

m2
q

s
+

9

4

!
4↵

s

3⇡

#
, (15)

where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:

Mel(t) =
X

f={q0s,e,µ,⌧}

m2
f

�2
s

2

4m2
f

� t

(t�m2
h

)2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

7
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HOW TO DESCRIBE KD?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilation

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution
no constraining assumptions

numerically challenging
typically overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically
manifestly captures all of the relevant physics

finite range of validity
no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:

vrel�VV =
�2
s

s

8⇡
�
V

v
V

|D
h

(s)|2(1� 4x+ 12x2) , (13)

where x ⌘ M2
V

/s, vV =
p
1� 4x and �

W

= 1, �
Z

= 1
2 and |D

h

(s)|2 is defined in eq. (9).
Fermion final states:

vrel�f f̄ =
�2
s

m2
f

4⇡
Xfv

3
f |Dh

(s)|2 , (14)

where vf =
p

1� 4m2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

X
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1 +
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#
, (15)

where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:

Mel(t) =
X

f={q0s,e,µ,⌧}

m2
f

�2
s

2

4m2
f

� t

(t�m2
h

)2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)

y ⌘ m
�

T
�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T
�

⌘ g
�

3m
�

n
�

Z
d3p

(2⇡)3
p2f

�

(p) (24)

2

…



h�vreli2 ⌘
g2
�

3Tm
�

n2
�

Z
d3p

(2⇡)3

Z
d3p̃

(2⇡)3
p2vrel�

�̄�!X̄X

f(E)f(Ẽ) (1)

where the equilibrium number density in the nonrelativistic regime is neq
�

= m3
�

g
�

K2(x)/(2⇡
2x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
Boltzmann equation can be written as:
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These equations still assume the equilibrium shape of         — but with variant temperaturef�(p)

or more accurately:  that the thermal averages computed with true non-
equilibrium distributions don’t differ much from the above ones

Y 0

Y
=

sY

xH̃

"
Y 2
eq

Y 2
h�vi � h�vineq

#
, (1)

y0

y
=

�(T )

xH̃


yeq
y

� 1

�
+

sY

xH̃

h
h�vineq � h�vi2,neq

i
(2)

+
sY

xH̃

Y 2
eq

Y 2


yeq
y

h�vi2 � h�vi
�
+

H

xH̃

hp4/E3ineq
3T

�

.

+
1� x

3
g

0
⇤S

g⇤S

3m
�

hp4/E3i
x=m

2
�/(s

2/3
y) (3)

d

dx
f
i

=

m3
�

H̃x4

g
�̄

2⇡2

N�1X

j=1

�q̃
j

2

h
q̃2
j

hvMøl�
�̄�!f̄f

i✓
i,j

�
f eq
i

f eq
j

�f
i

f
j

�

+ q̃2
j+1 hvMøl�

�̄�!f̄f

i✓
i,j+1

�
f eq
i

f eq
j+1�f

i

f
j+1

� i

+
�(x)

2H̃x


x
q,i

@2
q

f
i

+

✓
q
i

+
2x

q,i

q
i

+
q
i

x
q,i

◆
@
q

f
i

+ 3f
i

�

+ g̃
q
i

x
@
q

f
i

, (4)

D
|M|2

E

t

=
X

f

N
f

�2
S

m2
f

8k4

h2k2cm � 2m2
f

+m2
h

1 +m2
h

/(4k2cm)

�
�
m2

h

� 2m2
f

�
log

�
1 + 4k2cm/m

2
h

� i
. (5)

H̃ ⌘ H/ [1 + g̃(x)] where

g̃ ⌘ 1

3

T

gse↵

dgse↵
dT

. (6)

h�vineq = h�vi|
T=ys

2/3
/m�

, (7)

h�vi2,neq = h�vi2|
T=ys

2/3
/m�

, (8)

hp4/E3ineq =


g
�

2⇡2n
�,eq(T )

Z
dp

p6

E3
e�

E
T

�

T=ys

2/3
/m�

. (9)

h�vreli2 ⌘
g2
�

3Tm
�

n2
�

Z
d3p

(2⇡)3

Z
d3p̃

(2⇡)3
p2vrel�

�̄�!X̄X

f(E)f(Ẽ) (10)
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Consider general KD scenario, i.e. coupled temperature and number density evolution: 

Vector bosons:

vrel�VV =
�2
s

s

8⇡
�
V

v
V

|D
h

(s)|2(1� 4x+ 12x2) , (13)

where x ⌘ M2
V

/s, vV =
p
1� 4x and �

W

= 1, �
Z

= 1
2 and |D

h

(s)|2 is defined in eq. (9).
Fermion final states:

vrel�f f̄ =
�2
s

m2
f

4⇡
Xfv

3
f |Dh

(s)|2 , (14)

where vf =
p

1� 4m2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

X
q

= 3

"
1 +

 
3

2
log

m2
q

s
+

9

4

!
4↵

s

3⇡

#
, (15)

where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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f(E)f(Ẽ) (10)

where the equilibrium number density in the nonrelativistic regime is neq
�

= m3
�

g
�

K2(x)/(2⇡
2x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
Boltzmann equation can be written as:

y0

y
= �Y 0

Y

✓
1� h�vreli2

h�vreli

◆
�

✓
1� x

3

g0⇤S
g⇤S

◆
2m

�

c(T )

Hx

✓
1� yeq

y

◆
, (11)

with

c(T ) =
1

12(2⇡)3m4
�

T

X

X

Z
dk k5!�1 g±

�
1⌥ g±

� Z 0

�4k2

(�t)
1

8k4
|Mel|2 . (12)

1

9

h�vreli2 ⌘
g2
�

3Tm
�

n2
�

Z
d3p

(2⇡)3

Z
d3p̃

(2⇡)3
p2vrel�

�̄�!X̄X

f(E)f(Ẽ) (1)
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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Consider general KD scenario, i.e. coupled temperature and number density evolution: 
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0.1 Scattering cross-section
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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KINETIC DECOUPLING 101
Consider general KD scenario, i.e. coupled temperature and number density evolution: 

Vector bosons:
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important one-loop QCD correction [?]:
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where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)
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H & �el & �ann (21)
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NUMERICAL APPROACH
… or one can just solve full phase space Boltzmann eq.
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where the equilibrium number density in the nonrelativistic regime is neq
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= m3
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g
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K2(x)/(2⇡
2x).

1

fully general

expanded in NR and small 
momentum transfer
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(semi-relativistic!)



NUMERICAL APPROACH
… or one can just solve full phase space Boltzmann eq.
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where the equilibrium number density in the nonrelativistic regime is neq
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= m3
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g
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K2(x)/(2⇡
2x).

1

discretization, 
~1000 steps

Solved numerically with MatLab

can be extended to e.g. self-scatterings
very stiff, care needed with numerics

Note:

fully general

expanded in NR and small 
momentum transfer

10

(semi-relativistic!)



EXAMPLE #1:
SCALAR SINGLET DM
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄2

hS
-dependence of ‡

SI

and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄≠2

hS
, owing to its de-

pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].

Annihilation 
processes:

El. scattering 
processes:

resonant non-resonant

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

S

S

h

q,l

q,l

S S

q,l q,l

h
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Significant modification of the observed relic density contour in the Scalar Singlet DM model

essentially the 
only region left 
for this model

larger coupling needed          better chance for closing the last window

QCD = A - all quarks 
are free and present 

down to Tc =154 MeV

QCD = B - only light 
quarks in the plasma and 

only down to 4Tc
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RESULTS
EFFECT

effect on relic density:

effect on relic density: 
up to O(~10)

Why such non-trivial shape of the effect of early kinetic decoupling?         

we’ll inspect the y and Y evolution…
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RESULTS
EFFECT

effect on relic density:

effect on relic density: 
up to O(~10)

Why such non-trivial shape of the effect of early kinetic decoupling?         

we’ll inspect the y and Y evolution…

kinetic and chemical decoupling:

ratio approaches 1, 
but does not reach it!



DENSITY AND TDM EVOLUTION
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Resonant annihilation most effective for low momenta
             DM fluid goes through ”heating” phase before leaves kinetic equilibrium

co-moving 
number density

for mDM = 62 GeV,   i.e. just below the resonance:

DM 
temperature



DENSITY AND TDM EVOLUTION
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Resonant annihilation most effective for high momenta
             DM fluid goes through fast ”cooling” phase

for mDM = 57 GeV,   i.e. further away from the resonance:

after that when TDM drops to much annihilation not effective anymore



mDM = 58 GeV

FULL PHASE-SPACE EVOLUTION

mDM = 62.5 GeV

significant deviation from equilibrium 
shape already around freeze-out

effect on relic density largest, 
both from different T and fDM

large deviations only at later times, 
around freeze-out not far from eq. shape

effect on relic density 
~only from different T

black - 
equilibrium 

at TDM

blue - full 
solution for 
fDM at TDM
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FULL PHASE-SPACE EVOLUTION

mDM = 62.5 GeV
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large deviations only at later times, 
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effect on relic density 
~only from different T

black - 
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blue - full 
solution for 
fDM at TDM



MORE EXAMPLES:
FORBIDDEN DM & SEMI-ANNIHILATION
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FORBIDDEN DM SEMI-ANNIHILATION
mDM = 10 GeV,  mSM = 11 GeV;   |M|2  = const.

*Caveats:  toy example, only tree level, only cBE,
non-negligible momentum transfer in el. scatt.

(Fokker-Planck approx. problematic)

�ann/H

�/H

1

�ann/H

�/H

1

kinetic and chemical 
decoupling close

Annihilation 
threshold

velocity 
dependence

”heavy” SM 
particle

scattering 
rate low

O(10%) effect 
on relic density

*Caveats: only cBE, numerical accuracy challenging

see also Cai, Spray 1807.00832 

O(3%)  
effect

Z3 complex scalar singlet
just above the Higgs threshold semi-annihilation dominant!

Belanger, Kannike, Pukhov, Raidal ’13

very weak 
elastic scatterings

semi-annihilation 
by itself does not 
equilibrate DM

self-heating!
but rather leads to

will be much larger in case with 
stronger v-dependnece
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1. One needs to remember that kinetic equilibrium is a 
necessary assumption for standard relic density calculations

2. Coupled system of Boltzmann equations for 0th and 2nd 
moments allow for a very accurate treatment of the kinetic 
decoupling and its effect on relic density

3. In special cases the full phase space Boltzmann equation can 
be necessary — especially if one wants to trace DM 
temperature as well

4. A public release of the full phase space Boltzmann code 
coming soon

Stay tuned for this!
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Figure 6: LEFT: Evolution, due to annihilation/creation, of the DM phase-
space distribution, f(r, x), from an initial distribution with two bumps (blue
line) at r = 20 to three later times r = 20.001, 20.01, 20.1 (red lines). The
equilibrium distribution at r = 20.1 from Eq. (8) is shown by the black line.
As displayed by the integrated number density (“int =

∫

x2f(r, x)dx”) the
comoving number density is not conserved when DM annihilation/creation
is present.

full-phase space setup however uses the non-relativistic f eq
n.r. (required

by our scattering term). Nevertheless, for the cγ = 0 setup, we can still
consistently use the relativistic f eq. Implementing f eq (temporarily)
reveals that exact agreement, to 3 digits, Ωh2 = 0.0809 is achieved.

In Fig. 7 we present the full phase space distribution (right panel) and
the integrated relic density Yχ derived from Eq. (24) (left panel). It is worth
to point out that this is already a deviation from the standard calculation
— as the phase space distribution differs from equilibrium during freeze-out.
Adding a scattering term would of course drive the momentum distribu-
tion towards the equilibrium distribution, as demonstrated in the previous
section, and for S-wave the f(x) distribution does not impact the relic abun-
dance result. I did not investigate if already this phase-space distribution
deviates from ∝ f eq

n.r.(rf.o., x), where rf.o. is some suitable freeze-out temper-
ature. Decreasing the initial time r0 < 20 did not change the phase space
result, showing that starting at r = 20 is sufficient also for the kinetic freeze-

12

we have already seen that even if scatterings 
were very inefficient compared to annihilation, 
departure from equilibrium for both Y and y 
happened around the same time…

Obvious issue: 
How to define exactly the kinetic and chemical decouplings and what is the significance of such definitions?

Improved question:
Can kinetic decoupling happen much earlier than chemical?

)
turn off scatterings and take s-wave annihilation;
look at local disturbance

annihilation/production precesses drive to 
restore kinetic equilibrium!
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SCATTERING
The elastic scattering collision term:

2

tion II B), and finally introduce our framework for a fully
numerical solution (Section IIC). Section III is devoted
to a thorough application of these methods to the Scalar
Singlet model. We comment on our results in Section IV,
and discuss potential other areas of application, before we
conclude in Section V. In two Appendices we discuss in
detail the evolution of the Singlet DM phase-space den-
sity for selected parameter points (App. A) and comment
on the semi-relativistic form of the scattering operator in
the Boltzmann equation (App. B).

II. THERMAL PRODUCTION OF DARK
MATTER

Let us denote the DM particle by �, and its phase-
space density by f

�

(t,p). The evolution of f
�

is gov-
erned by the Boltzmann equation which, in an expand-
ing Friedmann-Robertson-Walker universe, is given by
[17, 18]

E (@
t

�Hp ·rp) f� = C[f
�

] . (1)

Here, H = ȧ/a is the Hubble parameter, a the scale fac-
tor, and the collision term C[f

�

] contains all interactions
between DM and SM particles f . For WIMPs, we are
to leading order interested in two-body processes for DM
annihilation and elastic scattering, C = Cann+Cel, where
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In the above expressions, |M|2 refers to the respective
squared amplitude, summed over all spin and other in-
ternal degrees of freedom, as well as all SM particles f .
We assume the SM particles to be in thermal equilib-
rium, such that their phase-space distribution is given
by g±(!) = 1/ [exp(!/T )± 1]. Note that we have ne-
glected Bose enhancement and Pauli blocking factors for
f
�

here, as we assume DM to be nonrelativistic; momen-
tum conservation then implies that, in Cann, we can also
neglect these factors for the SM particles.

Assuming CP invariance, and using the fact that in
thermal equilibrium annihilation and creation processes
should happen with the same frequency, the annihilation
term given by Eq. (2) can be further simplified to [9]
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where v = vMøl ⌘ (EẼ)�1[(p · p̃)2 �m4
�

]1/2 is the Møller
velocity, which in the rest frame of one of the DM
particles coincides with the lab velocity vlab = [s(s �
4m2

�

)]1/2/(s� 2m2
�

).
The scattering term, on the other hand, is in general

considerably more di�cult to manage. Analytic expres-
sions have, however, been obtained in the highly non-
relativistic limit of the DM particles, and assuming that
the momentum transfer in the scattering process is much
smaller than the DM mass [12, 18–22]:
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where the momentum exchange rate is given by
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. Here, �
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cos ✓)d�/d⌦ is the standard transfer cross section for
elastic scattering. In Appendix B, we discuss how
the scattering term is expected to change in the semi-
relativistic case, i.e. when the assumption of highly non-
relativistic DM is slightly relaxed. For reference, we will
in the following use
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when explicitly addressing this regime.

A. The standard treatment

In order to calculate the DM relic abundance, we can
integrate the Boltzmann Eq. (1) over p. This results in

dn
�

dt
+ 3Hn
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Z
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(2⇡)3E
Cann[f�] , (9)

which has to be solved for the DM number density
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(p) (10)

(note that Cel vanishes once it is integrated over). In
order to evaluate the r.h.s. of this equation, the usual
assumption [9] is that during chemical freeze-out one can
make the following ansatz for the DM distribution:

f
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= A(T )f
�,eq =

n
�

n
�,eq

f
�,eq , (11)

Expanding in NR and small momentum transfer:
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portion of phase-space, with almost vanishing relative
DM momenta. This implies not only that we always have
h�vi > h�vi2 in this regime, but also that the e↵ect of
the resonance rapidly becomes negligible.

Lastly, it is interesting to note that for
p
s & m

h

the annihilation rate e↵ectively features a 1/v2 veloc-
ity dependence. This is similar to resonant Sommerfeld-
enhanced annihilation, which leads to a suppressed relic
density after a prolonged freeze-out phase [30]. This
can clearly be seen in the evolution of Y (x) in Fig. 6,
for m

S

⇠ m
h

/2, where the di↵erences between the nu-
merical and the coupled Boltzmann approach are mostly
due to the late-time di↵erences in y(x) – which in turn
come about because of the rather significant di↵erences
in f

�

(q) at large values of x (c.f. Fig. 5).

Appendix B: Semi-relativistic kinetic theory

In this Appendix, we discuss how to generalize the
highly non-relativistic elastic scattering term in Eq. (5)
to incorporate the most important relativistic correc-
tions needed for the numerical implementation of the full
Boltzmann equation. Throughout, we refer to this result
as ‘semi-relativistic’ scattering.

The starting point is to expand the full collision term
Cel in small momentum transfer compared to the typi-
cal DM momentum – similar to what is done in order
to arrive at Eq. (5), but not only keeping lowest-order
terms in p2/m2

�

⇠ T/m
�

. From this, we can derive a
Fokker-Planck scattering operator in a relativistic form
(for details, see [21]):

Cel ' E

2
rp ·

"
�(T,p) (ETrp + p) f

�

#
. (B1)

Being a total divergence, this scattering operator man-
ifestly respects number conservation, as it should. An-
other important property, which one can directly read
o↵ from the part inside the brackets, is that it fea-
tures a stationary point given by the relativistic Maxwell-
Boltzmann distribution,

f eq
�

/ e�E/T . (B2)

The non-relativistic limit of Eq. (B1) gives the scat-
tering operator (5), but in this limit the stationary
point would instead be the non-relativistic version f eq

�

/
exp[�p2/(2m

�

T )] — which would cause a problem in
the full BE as this does not correspond to the actual

equilibrium distribution fed into the annihilation term of
Eq. (37).

In general, the momentum transfer rate �(T,p) in
Eq. (B1) depends on the DM momentum p. However,
the stationary point is independent of �, which moti-
vates us to restrict ourselves to the leading order term
�(T ) ⌘ �(T,0), neglecting any momentum dependence,
and use the non-relativistic limit in Eq. (B1) only to eval-
uate the momentum transfer rate �(T ) as it appears in

Eq. (6). To this order, we could thus also replace the
leading E in Eq. (B1) by m

�

; here, we choose to still
keep it as it leads to a much more compact analytical
form of the equation governing the DM temperature (see
below). Explicitly performing the first partial derivative
in Cel then leads to the final form of our semi-relativistic
Fokker-Planck operator as given by Eq. (8). This opera-
tor is our default choice for the numerical implementation
of the full Boltzmann equation.
As already pointed out in Section IIC, it is manda-

tory for the full phase-space calculation to have a scat-
tering operator with a fixpoint that matches the equilib-
rium distribution of Eq. (B2) assumed in the annihilation
term. For the coupled integrated Boltzmann system, on
the other hand, this issue is fully addressed by using the
relativistic temperature definition of Eq. (21) — rather
than its non relativistic version typically adopted in the
literature in the context of kinetic decoupling — because
this automatically leads to the correct fixpoint T

�

= T
for both the semi-relativistic Eq. (8) and, to the lowest
order, for the non-relativistic version Eq. (5); see the dis-
cussion in Section II B.
Another advantage of our semi-relativistic Fokker-

Planck operator is that the di↵erential equation for T
�

,
often quoted when discussing kinetic decoupling, takes a
very simple form even beyond the highly non-relativistic
limit. To see this, let us for the moment ignore the im-
pact of annihilations, and take the second moment of the
Boltzmann equation with this operator (using the rela-
tivistic definition of T

�

). This leads to
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which of course is equivalent to Eq. (28) in the main text,
when neglecting the annihilation terms and implement-
ing the replacement given in Eq. (35). Let us repeat that
the r.h.s. of the above equation only takes this particu-
lar form with our default choice of the semi-relativistic
Fokker-Planck term, whereas the moment appearing on
the left hand side is an exact result. This equation is in
general not closed in terms of T

�

. However, if we make
the ansatz of a Maxwellian DM phase-space distribution,
c.f. Eq. (34), we get a relation between the di↵erent mo-
mentum moments,

5hp2/E2i � 2hp4/E4i = hp4/E3i/T
�

, (B4)

such that the di↵erential equation closes in terms of T
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.
Indeed, introducing
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it takes a very simple form:
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More generally, Fokker-Planck scattering operator 
(relativistic, but still small momentum transfer):

equilibrium functions for SM particles

Semi-relativistic: assume that scattering 
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for both the semi-relativistic Eq. (8) and, to the lowest
order, for the non-relativistic version Eq. (5); see the dis-
cussion in Section II B.
Another advantage of our semi-relativistic Fokker-

Planck operator is that the di↵erential equation for T
�

,
often quoted when discussing kinetic decoupling, takes a
very simple form even beyond the highly non-relativistic
limit. To see this, let us for the moment ignore the im-
pact of annihilations, and take the second moment of the
Boltzmann equation with this operator (using the rela-
tivistic definition of T

�

). This leads to

Ṫ
�
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,

which of course is equivalent to Eq. (28) in the main text,
when neglecting the annihilation terms and implement-
ing the replacement given in Eq. (35). Let us repeat that
the r.h.s. of the above equation only takes this particu-
lar form with our default choice of the semi-relativistic
Fokker-Planck term, whereas the moment appearing on
the left hand side is an exact result. This equation is in
general not closed in terms of T

�

. However, if we make
the ansatz of a Maxwellian DM phase-space distribution,
c.f. Eq. (34), we get a relation between the di↵erent mo-
mentum moments,

5hp2/E2i � 2hp4/E4i = hp4/E3i/T
�

, (B4)

such that the di↵erential equation closes in terms of T
�

.
Indeed, introducing

2(1� w) ⌘ g
�

3T
�

n
�

Z
d3p

(2⇡)3
p4

E3
f
�

(p) =
hp4/E3i
3T

�

, (B5)

it takes a very simple form:

Ṫ
�

+ 2w(T
�

)HT
�

= w(T
�

)�(T ) (T � T
�

) . (B6)

is momentum independent

Bringmann, Hofmann ’06

Binder et al. ’16

physical interpretation: 
scattering rate



EARLY KD AND RESONANCE
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our work wasn’t the first to realize that resonant annihilation can lead to early kinetic decoupling…

… but we developed a dedicated accurate method/code to deal with this and other similar situations

Feng, Kaplinghat, Yu ’10 — noted that for Sommerfeld-type resonances KD can happen early

Dent, Dutta, Scherrer ’10 — looked at potential effect of KD on thermal relic density

Since then people were aware of this 
effect and sometimes tried to estimate it 
assuming instantaneous KD, e.g., in the 
case of Sommerfeld effect in the MSSM:

A
H

, Iengo, U
llio ’11

but no systematic studies of decoupling 
process were performed, until… 

…models with very late KD become popular, in part to solve „missing satellites” problem
van den Aarssen et al ’12; Bringmann et al ’16, x2; Binder et al ’16

this progress allowed for better approach to early KD scenarios as 
well and was applied to the resonant annihilation case in

Duch, Grządkowski ’17
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WHY SPIKES IN TKD?(

)

varying the 
scattering rate

10% deviation

Effect resembling first order „phase transition” — 
artificial as dependent on a particular choice of TKD definition


