EARLY KINETIC DECOUPLING OF DM

WHEN THE STANDARD WAY OF CALCULATING THE THERMAL RELIC DENSITY FAILS

Andrzej Hryczuk

University of Oslo

based on: T. Binder, T. Bringmann, M. Gustafsson and AH, Phys.Rev. D96 (2017) 115010, <u>astro-ph.co/1706.07433</u> + work in progress

28th August 2018

MOTIVATION Thermal Relic Density

Theory:

I. Natural

Comes out automatically from the expansion of the Universe

Naturally leads to cold DM

II. Predictive

No dependence on initial conditions Fixes coupling(s) \Rightarrow signal in DD, ID & LHC

III. It is <u>not</u> optional

Overabundance constraint

To avoid it one needs quite significant deviations from standard cosmology

Experiment:

... as a constraint:

...as a target:

"(...) besides the Higgs boson mass measurement and LHC direct bounds, the constraint showing **by far the strongest impact** on the parameter space of the MSSM is the **relic density**"

Roszkowski et al. '14

...as a þin:

When a dark matter signal is (finally) found: relic abundance can pin-point the particle physics interpretation

MOTIVATION Thermal Relic Density

Theory:

I. Natural

Comes out automatically from the expansion of the Universe

Naturally leads to cold DM

II. Predictive

No dependence on initial conditions Fixes coupling(s) \Rightarrow signal in DD, ID & LHC

III. It is not optional

Overabundance constraint

To avoid it one needs quite significant deviations from standard cosmology

Experiment:

...as a constraint:

When a dark matter signal is (finally) found: relic abundance can pin-point the particle physics interpretation

Boltzmann equation for $f_{\chi}(p)$:

 $E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) \boldsymbol{f}_{\boldsymbol{\chi}} = \mathcal{C}[\boldsymbol{f}_{\boldsymbol{\chi}}]$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...

...for derivation from thermal QFT see e.g., 1409.3049

Boltzmann equation for $f_{\chi}(p)$:

 $E\left(\partial_{t} - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$ $\bigvee_{\text{(i.e. take 0th moment)}}^{\text{integrate over }p}$ $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi} \to ij}\sigma_{\text{rel}} \rangle^{\text{eq}} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\text{eq}}n_{\bar{\chi}}^{\text{eq}}\right)$

where the thermally averaged cross section:

$$\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3 \vec{p}_{\chi}}{(2\pi)^3} \frac{d^3 \vec{p}_{\bar{\chi}}}{(2\pi)^3} \ \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \ f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...

...for derivation from thermal QFT see e.g., 1409.3049

Boltzmann equation for $f_{\chi}(p)$:

 $E\left(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}\right)f_{\chi} = \mathcal{C}[f_{\chi}]$ classical limit, molecular chaos,... ... for derivation from thermal QFT see e.g., 1409.3049 integrate over p (i.e. take 0^{th} moment) $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel} \rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq} \right)$ where the thermally averaged cross section: 0.01 $\langle \sigma_{\chi\bar{\chi}\to ij}v_{\rm rel}\rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3\vec{p}_{\chi}}{(2\pi)^3} \frac{d^3\vec{p}_{\bar{\chi}}}{(2\pi)^3} \ \sigma_{\chi\bar{\chi}\to ij}v_{\rm rel} \ f_{\chi}^{\rm eq}f_{\bar{\chi}}^{\rm eq}$ 0.001 0.0001 10increasing $\langle \sigma v \rangle$ 10 Density 10-10-10-10-10 10-10 Cornoving 10-1 10-1 n_{i} 10" xea 10-* 10-# 1000

*assumptions for using Boltzmann eq:

time \rightarrow

Fig.: Jungman, Kamionkowski & Griest, PR'96

x=m/T

Boltzmann equation for $f_{\chi}(p)$: *assumptions for using Boltzmann eq: $E\left(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}\right)f_{\chi} = \mathcal{C}[f_{\chi}]$ classical limit, molecular chaos,... ... for derivation from thermal OFT see e.g., 1409.3049 integrate over p (i.e. take 0th moment) $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel} \rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq} \right)$ where the thermally averaged cross section: 0.01 $\langle \sigma_{\chi\bar{\chi}\to ij}v_{\rm rel}\rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3\vec{p}_{\chi}}{(2\pi)^3} \frac{d^3\vec{p}_{\bar{\chi}}}{(2\pi)^3} \sigma_{\chi\bar{\chi}\to ij}v_{\rm rel} f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$ 0.001 0.0001 10 increasing $\langle \sigma v \rangle$ 10 Density 10-10-10umber 10-10-10 Z 10-8 Cornoving **Critical assumption:** kinetic equilibrium at chemical decoupling 10-1 10-1 $n_{\chi eq}$ $f_{\chi} \sim a(\mu) f_{\chi}^{eq}$ 10" 10 10-# 1000 time \rightarrow x=m/T Fig.: Jungman, Kamionkowski & Griest, PR'96

THERMAL RELIC DENSITY "EXCEPTIONS"

I. Three "exceptions"

Griest, Seckel '91

2. Non-standard cosmology

many works... very recent e.g., D'Eramo, Fernandez, Profumo '17

3. Second era of annihilation

Feng et al. '10; Bringmann et al. '12; ...

4. Bound State Formation

recent e.g., Petraki at al. '15, '16; An et al. '15, '16; Cirelli et al. '16; ...

5. $3 \rightarrow 2$ and $4 \rightarrow 2$ annihilation

e.g., D'Agnolo, Ruderman '15; Cline at al. '17; Choi at al. '17; ...

6. Semi-annihilation/Cannibalization

D'Eramo, Thaler '10; ... e.g., Kuflik et al. '15; Pappadopulo et al. '16; ...

7. Conversion driven/Co-scattering Garny, Heisig, Lulf, Vogl '17 D'Agnolo, Pappadopulo, Ruderman '17

8. ...

In other words: whenever studying non-minimal scenarios "exceptions" appear but most of them come from interplay of new added effects, while do not affect the foundations of modern calculations

WHAT IF NON-MINIMAL SCENARIO?

Example: assume two particles in the dark sector: A and B

scenario process	Co-annihilation	superNIMP	Co ^{rdecaying}	Conversion-driven	Cambial Semiration	Forbidden-like	··
annihilation A A <-> SM SM A B <-> SM SM B B <-> SM SM							
conversion A A <-> B B							
inelastic scattering A SM <-> B SM							
elastic scattering A SM <-> A SM B SM <-> B SM							
el. self-scattering A A <-> A A B B <-> B B							
decays A <-> B SM A <-> SM SM B <-> SM SM							
semi-ann/3->2 A A A <-> A A A A <-> A B A A A <-> SM A							

WHAT IF NON-MINIMAL SCENARIO?

Example: assume two particles in the dark sector: A and B

scenario process	Corannihilation	superWIMP	Cordecaying	Conversion-driven	Cambial/Semiranion	Forbiddentike	
annihilation A A <-> SM SM A B <-> SM SM B B <-> SM SM	sets the value of relic density						
conversion A A <-> B B inelastic scattering A SM <-> B SM	efficient by construction						
elastic scattering A SM <-> A SM B SM <-> B SM	assumed to be efficient						
el. self-scattering A A <-> A A B B <-> B B							
decays A <-> B SM A <-> SM SM B <-> SM SM							
semi-ann/3->2 A A A <-> A A A A <-> A B A A A <-> SM A							

WHAT IF NON-MINIMAL SCENARIO?

Example: assume two particles in the dark sector: A and B

scenario Process	Corannihilation	superNIMP	Cordecaying	Conversion-driven	Cambial/Semiranion	Forbidden-like	
annihilation A A <-> SM SM A B <-> SM SM B B <-> SM SM	sets the value of relic density						
conversion A A <-> B B inelastic scattering A SM <-> B SM	efficient by construction	~~~~~~					
elastic scattering A SM <-> A SM B SM <-> B SM	assumed to be efficient						in all scenarios kinetic equilibrium assumption crucial,
el. self-scattering A A <-> A A B B <-> B B							but not always "automatic"!
decays A <-> B SM A <-> SM SM B <-> SM SM							
semi-ann/3->2 A A A <-> A A A A <-> A B A A A <-> SM A							5

FREEZE-OUT VS. DECOUPLING

If kinetic decoupling much, much later: possible impact on the matter power spectrum 2. i.e. kinetic decoupling can have observable consequences and affect e.g. missing satellites problem

I.

EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation i.e. rates around freeze-out: $H \sim \Gamma_{ann} \gtrsim \Gamma_{el}$

B) Boltzmann suppression of SM as strong as for DM e.g., below threshold annihilation (forbidden-like DM)

C) Scatterings and annihilation have different structure

e.g., semi-annihilation, 3 to 2 models,...

HOW TO DESCRIBE KD?

All information is in full BE:

both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$

contains both scatterings and annihilation

KINETIC DECOUPLING 101

Consider general KD scenario, i.e. coupled temperature and number density evolution:

$$\begin{aligned} \frac{Y'}{Y} &= -\frac{1 - \frac{x}{3} \frac{g'_{*S}}{g_{*S}}}{Hx} sY \left(\langle \sigma v_{\text{rel}} \rangle |_{x=m_{\chi}^{2}/(s^{2/3}y)} - \frac{Y_{\text{eq}}^{2}}{Y^{2}} \langle \sigma v_{\text{rel}} \rangle |_{x} \right) \\ \frac{y'}{y} &= -\frac{1 - \frac{x}{3} \frac{g'_{*S}}{g_{*S}}}{Hx} \left[2m_{\chi}c(T) \left(1 - \frac{y_{\text{eq}}}{y} \right) - sY \left(\left(\langle \sigma v_{\text{rel}} \rangle - \langle \sigma v_{\text{rel}} \rangle_{2} \right)_{x=m_{\chi}^{2}/(s^{2/3}y)} - \frac{Y_{\text{eq}}^{2}}{Y^{2}} \left(\langle \sigma v_{\text{rel}} \rangle - \frac{y_{\text{eq}}}{y} \langle \sigma v_{\text{rel}} \rangle_{2} \right)_{x} \right) \right] \\ &+ \frac{1 - \frac{x}{3} \frac{g'_{*S}}{g_{*S}}}{3m_{\chi}} \langle p^{4}/E^{3} \rangle_{x=m_{\chi}^{2}/(s^{2/3}y)} \end{aligned}$$

<u>These equations still assume the equilibrium shape of $f_{\chi}(p)$ — but with variant temperature</u>

or more accurately: that the thermal averages computed with true nonequilibrium distributions don't differ much from the above ones

KINETIC DECOUPLING 101

Consider general KD scenario, i.e. coupled temperature and number density evolution:

<u>These equations still assume the equilibrium shape of $f_{\chi}(p)$ — but with variant temperature</u>

or more accurately: that the thermal averages computed with true nonequilibrium distributions don't differ much from the above ones

KINETIC DECOUPLING 101

Consider general KD scenario, i.e. coupled temperature and number density evolution:

<u>These equations still assume the equilibrium shape of $f_{\chi}(p)$ — but with variant temperature</u>

or more accurately: that the thermal averages computed with true nonequilibrium distributions don't differ much from the above ones

NUMERICAL APPROACH

... or one can just solve full phase space Boltzmann eq.

NUMERICAL APPROACH

... or one can just solve full phase space Boltzmann eq.

Example #1: Scalar Singlet DM

SCALAR SINGLET DM

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

$$\mathcal{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} \mu_{S}^{2} S^{2} - \frac{1}{2} \lambda_{s} S^{2} |H|^{2} \qquad \qquad m_{s} = \sqrt{\mu_{S}^{2} + \frac{1}{2} \lambda_{s} v_{0}^{2}}$$

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

Significant modification of the observed relic density contour in the Scalar Singlet DM model

Results Effect

effect on relic density: up to O(~10)

Why such non-trivial shape of the effect of early kinetic decoupling?

we'll inspect the y and Y evolution...

Results Effect

Why such non-trivial shape of the effect of early kinetic decoupling?

we'll inspect the y and Y evolution...

Density and T_{DM} evolution

Resonant annihilation most effective for low momenta

----> DM fluid goes through "heating" phase before leaves kinetic equilibrium

Density and T_{DM} evolution

Resonant annihilation most effective for high momenta

→ DM fluid goes through fast "cooling" phase after that when T_{DM} drops to much annihilation not effective anymore

FULL PHASE-SPACE EVOLUTION

significant deviation from equilibrium shape already around freeze-out

→ effect on relic density largest, both from different T and f_{DM}

large deviations only at later times, around freeze-out not far from eq. shape effect on relic density ~only from different T

FULL PHASE-SPACE EVOLUTION

significant deviation from equilibrium shape already around freeze-out

→ effect on relic density largest, both from different T and f_{DM}

large deviations only at later times, around freeze-out not far from eq. shape

effect on relic density
 only from different T

MORE EXAMPLES: FORBIDDEN DM & SEMI-ANNIHILATION

*Caveats: only cBE, numerical accuracy challenging

(Fokker-Planck approx. problematic)

*Caveats: only cBE, numerical accuracy challenging

(Fokker-Planck approx. problematic)

*Caveats: only cBE, numerical accuracy challenging

(Fokker-Planck approx. problematic)

I. One needs to remember that kinetic equilibrium is a <u>necessary</u> assumption for <u>standard</u> relic density calculations

2. Coupled system of Boltzmann equations for 0th and 2nd moments allow for a <u>very accurate</u> treatment of the kinetic decoupling and its effect on relic density

3. In special cases the full phase space Boltzmann equation can be necessary — especially if one wants to <u>trace DM</u> <u>temperature</u> as well

4. A public release of the full phase space Boltzmann code for this! coming soon

BACKUP

KD BEFORE CD?

Obvious issue: How to <u>define exactly</u> the <u>kinetic</u> and <u>chemical</u> decouplings and what is the significance of such definitions?

> Improved question: Can kinetic decoupling happen <u>much earlier</u> than chemical?

we have already seen that even if scatterings were very inefficient compared to annihilation, departure from equilibrium for both Y and y happened around the same time...

turn off scatterings and take s-wave annihilation; look at local disturbance

annihilation/production precesses drive to restore kinetic equilibrium!

Scattering

The elastic scattering collision term:

$$C_{\rm el} = \frac{1}{2g_{\chi}} \int \frac{d^3k}{(2\pi)^3 2\omega} \int \frac{d^3\tilde{k}}{(2\pi)^3 2\tilde{\omega}} \int \frac{d^3\tilde{p}}{(2\pi)^3 2\tilde{E}} \times (2\pi)^4 \delta^{(4)}(\tilde{p} + \tilde{k} - p - k) |\mathcal{M}|^2_{\chi f \leftrightarrow \chi f} \times \left[(1 \mp g^{\pm})(\omega) g^{\pm}(\tilde{\omega}) f_{\chi}(\tilde{\mathbf{p}}) - (\omega \leftrightarrow \tilde{\omega}, \mathbf{p} \leftrightarrow \tilde{\mathbf{p}}) \right]$$

Expanding in NR and small momentum transfer: Bringmann, Hofmann '06

$$C_{\rm el} \simeq \frac{m_{\chi}}{2} \gamma(T) \left[Tm_{\chi} \partial_p^2 + \left(p + 2T \frac{m_{\chi}}{p} \right) \partial_p + 3 \right] f_{\chi}$$

More generally, Fokker-Planck scattering operator (relativistic, but still small momentum transfer): Binder et al. '16

$$C_{\rm el} \simeq \frac{E}{2} \nabla_{\mathbf{p}} \cdot \left[\gamma(T, \mathbf{p}) \left(ET \nabla_{\mathbf{p}} + \mathbf{p} \right) f_{\chi} \right]$$

physical interpretation: scattering rate

<u>Semi-relativistic</u>: assume that scattering $\gamma(T, \mathbf{p})$ is momentum independent

EARLY KD AND RESONANCE

our work wasn't the first to realize that resonant annihilation can lead to early kinetic decoupling...

Feng, Kaplinghat, Yu '10 — noted that for Sommerfeld-type resonances KD can happen early

Dent, Dutta, Scherrer '10 — looked at potential effect of KD on thermal relic density

Since then people were aware of this effect and sometimes tried to estimate it assuming instantaneous KD, e.g., in the case of Sommerfeld effect in the MSSM:

but no systematic studies of decoupling process were performed, until...

...models with very late KD become popular, in part to solve "missing satellites" problem van den Aarssen et al '12; Bringmann et al '16, x2; Binder et al '16

this progress allowed for better approach to early KD scenarios as well and was applied to the resonant annihilation case in

Duch, Grządkowski '17

... but we developed a dedicated accurate method/code to deal with this and other similar situations

Effect resembling first order ", phase transition" — artificial as dependent on a particular choice of T_{KD} definition