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1.   We know nearly nothing at all  
about dark matter

DARK MATTER
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2.   We know quite a lot about  
dark matter

origin

nature

interactions

structure

…

particle(s) vs. sth else

limits on interactions 

mechanisms of origin

large scale structure

…

(we don’t know what it is)

(but we know what it isn
’t)

it is there!



I don’t think there is any need for convincing you that DM exists…

… but perhaps I should argue why particle DM

    Evidence 

          on all scales!
)

DARK MATTER
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PARTICLE DARK MATTER
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We know that the Standard Model (of particle physics) in not complete*

its extension could in principle be extremely minimal… but it is far more 
likely that there are (many?) new particles we do not know yet

it is quite possible that some of them are stable and then they are a dark 
matter

if so it is very natural to expect that they constitute the dark matter

particle DM in not an anomaly
it is a generic prediction 

(at least on a qualitative level)

)

*neutrino masses, 
baryogenesis, 

quantum gravity,

 …



NEW PHYSICS�
(IS ALWAYS) AROUND THE CORNER

Now, after the Higgs was found - The Hierarchy Problem

but then we knew sth is there: vide so-called 

unitarization of the WW scattering cross section

26 CHAPTER 2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL
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Figure 2.1: The diagrams giving the dominant one-loop corrections to the Higgs boson h mass.

of the SM, the Higgs boson h gets a one-loop correction of the form:
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where the contributions of other quarks than a t were neglected, due to the smallness of
their Yukawa couplings (or equivalently masses). Diagrams giving this type of corrections
are given on Fig.2.1. This quadratic corrections tend to push the mass of the Higgs boson
to the highest scale of the theory. On the other hand electroweak precision data favour
mh to be at the EW scale [75]. Therefore, in order to satisfy this constraints an important
cancellation between positive and negative contributions to (2.4) is needed.

This is a viable solution, but leads to the famous naturalness issue, the so-called hier-
archy problem: why does the EW scale is so small compared to the cut-o↵ one (typically
considered to be the GUT2 or Planck scale)? Or, more technically, why the parameters
of the model need to be so precisely fine-tuned, so that this cancellation occurs? Al-
though this might be just a coincidence, a more ”natural” reason would be that there
exists some sort of mechanism that eliminates or strongly suppresses these quadratic cor-
rections. Such a mechanism can be provided by a symmetry. For example, in the SM
fermions and gauge bosons do not get these kind of contributions, due to chiral and gauge
symmetry, respectively. This symmetry might be supersymmetry, which we will discuss
in Sec.2.2.

Another neutralness issue present in the Standard Model is the Strong-CP problem
already discussed Sec.1.2.2. Also there a large fine-tuning is necessary, unless some mech-
anism for driving the ✓̄ to zero is present.

In principle, the naturalness issues are not ”true problems” of the theory. They do
not pose any logical di�culties, nor disagreement with experiment. However, they are a
bit disturbing and may serve as hints for the new physics.

2Grand Unified Theories (GUTs) aim to unify the fundamental interactions by embedding GSM into
a higher dimensional group. This happens typically at roughly 1016 GeV.

July 2012 - the Higgs boson since then:

or in other words: why is the Higgs boson so light?

EW
 part

H
iggs
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…but every massive particle with not-too-weak interactions with 
the SM will be produced thermally, with relic abundance:

1.4. DETECTION METHODS 17

with

g1 2 heff
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, (1.25)
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, (1.26)
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45s
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Within this approximation, in a radiation dominated Universe with an adiabatic expan-
sion, it is possible to find an analytical solution, giving the freeze-out happening at [41]:
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and the relic density being equal to

⌦�h
2 1.04 109

mP l
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1

a 3 b xf

. (1.29)

If one plugs in the numbers of a typical WIMP of a mass O 100GeV one indeed gets
xf 20 30 and the relic density:

⌦�h
2 0.1

3 10 26cm3s 1

�v
. (1.30)

This is the advocated famous ”WIMP miracle”: a particle of a typical cross-section gov-
erned by weak interactions and mass on a weak scale gives correct thermal relic density.
This result should be taken however with a grain of salt. Not only it depends on several
assumptions and is related only to the simplified case without co-annihilations, but also
inspected in more detail shows that in fact the mass of the WIMP should be rather a bit
closer to a TeV scale and in concrete realizations rather fine-tuned, see e.g. [47]. This
weakens a bit the motivation of a WIMP as a manifestation of new weak scale physics.
Nevertheless, this simple computations shows why so much e↵ort is devoted to studies of
the weakly interacting massive particles.

1.4 Detection methods

The prospects for experimental searches for the dark matter very strongly relies on its
nature. If it is (nearly) decoupled from our visible SM sector we can probe it only via
gravity-strength interactions. In this case it is extremely hard to measure any of its
properties. On the other hand, if the dark matter has anything to do with the new
physics suggested by the open issues in the SM, other detection channels are possible. In
the case of a WIMP, its properties lead to possible observable scattering on the nuclei in
direct detection (DD) and additional source of cosmic rays in indirect detection (ID).

Dark matter could be created in many different ways…

Lee, Weinberg ’77; + others

This is dubbed the WIMP miracle because it coincidentally seem to point at the same 

energy scale as suggested by the Hierarchy Problem

freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling timeT

THE ORIGIN OF DARK MATTER
AND THE „WIMP MIRACLE”
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WIMP DETECTION 
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CURRENT LIMITS�
AND DECLINE OF THE WIMP PARADIGM

”The great tragedy of science - the slaying of 

a beautiful hypothesis by an ugly fact”


Aldous Huxley

On both Direct Detection and LHC front no* signal of DM particle!

*convincing 8



… BUT IN FACT WIMP�
NOT EVEN SLIGHTLY DEAD
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FIG. 9: Bounds on the generic thermal WIMP window, as-
suming WIMP DM is 100% of the DM. Shown is the con-
servative bound calculated in this work from data (Visibles),
and the unitarity bound [48]. The remaining WIMP window
is the orange line, and the white space is unprobed. Thermal
relic cross section is the dashed line [4].

lower than the mass of their progenitor particle; other-
wise the portion of DM energy split into each mediator’s
final states will be unequal [118, 119], introducing extra
model dependence to the calculation.

Note that 2 ! 3 bremsstrahlung processes can be
the dominant DM annihilation mode in the scenario
the 2 ! 2 annihilation mode is suppressed [120–135].
Bremsstrahlung can lift helicity suppression for direct
annihilation for Majorana DM to neutrinos, but the an-
nihilation rate is generally still not su�ciently large to
produce a thermal relic cross section.

3. Invisibles and Sub-Dominant Density

When the limit on the total cross section is below
the thermal-relic prediction, the WIMP is nominally ex-
cluded. There are two other possible interpretations.

First, the fraction below the limit can be interpreted as
the fraction required to proceed to invisible final states.

Second, the strength of the limit below the relic line
can also be used to set a bound on sub-dominant WIMP
content. For standard indirect detection analyses for
WIMP DM, the annihilation cross section and the den-
sity are often considered as independent, and are related
to the astrophysical flux F as

F =
h�vi

8⇡m2
�

Z
⇢
2

�d`, (14)

where ⇢� is the DM density, and ` is the line of sight.

FIG. 10: Bounds on the generic thermal WIMP window, as-
suming sub-dominant WIMP content. Shown is the conserva-
tive bound calculated in this work from data (Visibles), and
the unitarity bound [48]. Thermal relic cross section is the
dashed line [4].

The upper limit is obtained from upper limits on F , i.e.,

h�vi < h�vlimiti ⌘ F
8⇡m2

�R
⇢2�d`

. (15)

For sub-dominant WIMP DM, if the WIMP density is
completely determined by the annihilation cross section,
they are no longer independent, as

⇢WIMPh�vWIMPi = ⇢�h�v�i, (16)

where h�v�i ⇠ 3⇥ 10�26 cm3
/s is the thermal relic cross

section. The annihilation flux from the sub-dominant
WIMP is then

F =
h�vWIMPi
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=
h�v�i

2

h�vWIMPi

1

8⇡m2
�

Z
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2

�d`.

Therefore, an upper limit on the flux implies

h�v�i
2

h�vWIMPi
< h�vlimiti, (18)

which provides a lower limit on the sub-dominant WIMP
cross section,

h�vWIMPi >
h�v�i

2

h�vlimiti
. (19)

R. Leane et al; 1805.10305

Most of the (strongest) limits are 
based on assumptions motivated by 
theoretical prejudice (or convenience)

this can lead to a very 

broad-brush conclusions

excluded by 
observations

predicted probabilities 
can be >1

too much dark 
matterall fine!

9



… but precision cosmology & astrophysics has a potential to provide the 
so-much needed observational input and show which way to follow

Nature, volume 562, pages 51–56 (2018)

(…) the new guiding principle should be “no stone left unturned”. 

From HEP perspective it all may feel quite depressing…

TIME FOR A NEW PARADIGM?

i.e. test all ideas in all possible ways…

10



OUTLINE
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1. Introduction


2. Kinetic decoupling


3. n-th Exception


4. Summary


• standard approach to thermal relic density

• recent novel models/ideas

• freeze-out vs. decoupling

• significance for cosmology

• early kinetic decoupling with

• velocity dependent annihilation



I. Natural


II. Predictive


III. It is not optional
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MOTIVATION�
THERMAL RELIC DENSITY 

When a dark matter signal is (fi 

relic abundance can pin-point the 


particle physics interpretation

Experiment: Theory:
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”(…) besides the Higgs boson 
mass measurement and LHC 
direct bounds, the constraint 
showing by far the strongest 
impact on the parameter space 
of the MSSM is the relic 
density”

…as a constraint:

…as a target:

…as a pin:

Roszkowski et al. ’14

Fixes coupling(s)      signal in DD, ID & LHC

No dependence on initial conditions

To avoid it one needs quite significant 
deviations from standard cosmology

Overabundance constraint

Comes out automatically from the 
expansion of the Universe

)

Naturally leads to cold DM



THERMAL RELIC DENSITY �
STANDARD APPROACH
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time evolution of         in kinetic theory: 

freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling time

)

T

no
n-

eq
uil

ibr
ium

f�(p)

E (@t �H~p ·r~p) f� = C[f�]
dn�

dt
+ 3Hn� = C

the collision term integra
tedLiouville operator in 


FRW background



THERMAL RELIC DENSITY �
STANDARD APPROACH
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*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

Critical assumption: 

kinetic equilibrium at chemical decoupling

f� ⇠ a(µ)f eq
�

E (@t �H~p ·r~p) f� = C[f�])

where the thermally averaged cross section:

h���̄!ijvrelieq = �
h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄

Boltzmann equation for        :

integrate over p 

(i.e. take 0th moment)

f�(p)

)



HISTORICAL PRELUDE�
THREE EXCEPTIONS
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1. Co-annihilations


2. Annihilation to forbidden channels


3. Annihilation near poles

〈σeffv〉 =
∑

ij

〈σijvij〉
n
eq
i n

eq
j

n
2
eq

σij =
∑

X

σ(χiχj → X)with:

if more than one state share a 
conserved quantum number 

making DM stable

if DM is slightly below mass 
threshold for annihilation 

e.g., SUSY

recent e.g., 1505.07107

„forbidden” channel can still be 
accessible in thermal bath)

Griest & Seckel ’91

expansion in velocity 

(s-wave, p-wave, etc.) not safe (more historical issue: 


these days most people 

use numerical codes)



THERMAL RELIC DENSITY �
MODERN ”EXCEPTIONS”
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1. Non-standard cosmology


2. Bound State Formation


3. 3      2 and 4      2 annihilation


4. Second era of annihilation


5. Semi-annihilation


6. Cannibalization


7. …

…in other words: whenever studying non-minimal scenarios ”exceptions” appear

recent e.g., Petraki at al. ’15, ’16;   An et al. ’15, ’16;   Cirelli et al. ’16; …

e.g., D’Agnolo, Ruderman ’15;   Cline at al. ’17;  Choi at al. ’17;  …

D’Eramo, Thaler ’10; …

Feng et al. ’10;   Bringmann et al. ’12; … 

many works… very recent e.g., D’Eramo, Fernandez, Profumo ’17

e.g., Kuflik et al. ’15;   Pappadopulo et al. ’16; … 



WHAT IF NON-MINIMAL SCENARIO?
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annihilation

…

A A <-> SM SM
A B <-> SM SM
B B <-> SM SM

conversion
A A <-> B B

A SM <-> B SM

A SM <-> A SM
B SM <-> B SM

elastic scattering

el. self-scattering

decays

semi-ann/3->2

inelastic scattering

A A <-> A A
B B <-> B B

A <-> B SM
A <-> SM SM
B <-> SM SM

A A A <-> A A
A A <-> A B

A A A <-> SM A

first efficient 

then stops

efficient 

always

assumed to 

be very

 efficient

in all scenarios 
kinetic 

equilibrium 
assumption crucial, 
but not always ”

automatic”!

Example: assume two particles in the dark sector:  A and B

scenarioprocess



FREEZE-OUT VS. DECOUPLING

DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

where t = q̃2 = (k − k′)2, and after summing over all the spins we get

∑

spins

∣

∣Mscatt
∣

∣

2
=

e4

t2
× tr

(

(#k′ +me)γ
ν(#k +me)γ

λ
)

× tr
(

(#p′ +Mµ)γν(#p +Mµ)γλ
)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
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ν(#k +me)γ

λ
)scatt
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∣Mscatt
∣

∣

2
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∣Mpair
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2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,

∑

spins

∣

∣Mpair
∣

∣

2
= F (p1, p2, p

′

1, p
′

2) and
∑

spins

∣

∣Mscatt
∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just

2
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p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just

2

crossing sym.

~

dark matter frozen-out but typically 
still kinetically coupled to the plasma

Boltzmann suppression of DM vs. SM scatterings typically more frequent)

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

18

Recall: in standard thermal relic density calculation:

Critical assumption: 

kinetic equilibrium at chemical decoupling

f� ⇠ a(µ)f eq
�



EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

19
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HOW TO DESCRIBE KD?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilation

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution

no constraining assumptions


numerically challenging

typically overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically

manifestly captures all of the relevant physics


finite range of validity

no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
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Fermion final states:
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)
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Figure 1. The left panel shows the phaseplot and solution for the WIMP temperature

evolution, for mχ ∼ 100 GeV and |M|
2

∼ g4
Y (mχ/ω)2, expressed in the dimensionless

variables introduced in Eqs. (8, 9). At T ! Tkd, any departure from thermal
equilibrium (Tχ = T ) is restored almost immediately (except for a short period around
the QCD phase transition); for T " Tkd, the WIMPs decouple from the thermal bath
and cool down with the Hubble expansion as Tχ ∝ a−2.

In the right panel, the effective number of relativistic degrees of freedom is plotted
as a function of the temperature, implementing the results of [25] for the evolution of
this quantity during the QCD phase transition; for reference, the decoupling of muons
and electrons is also indicated.

from this behaviour (except for a short period during the QCD transition, see below,

when the rapidly changing effective number of degrees of freedom does not allow this).

In principle, the scattering with all types of SM particles contributes to c(T ), see
Eq. (A.8). This picture is a bit complicated by the fact that kinetic decoupling in some

cases can take place close to, or even above the QCD phase transition, the details of

which are not yet fully understood. Lattice calculations, however, start to converge at

a value for the critical temperature of Tc ≈ 170 MeV for the most interesting case of

two light (up and down) and one more massive (strange) quark flavour [23] and indicate

that the plasma can be described by free quarks and gluons only for T " 4Tc [24]. For
the effective number of degrees of freedom during the transition, we adopt the results

of [25] as displayed in the right panel of Fig. 1. As scattering partners are concerned,

we conservatively restrict ourselves to leptons and, for T > 4Tc, to the three lightest

quarks.

The resulting range in Tkd for neutralino dark matter, obtained after having

performed the extensive scan described in Section 2, is shown in Fig. 2 as a function of

the mass mχ and gaugino fraction Zg ≡ |N11|2 + |N12|2 (in our case dominated by the
Bino fraction). The gray band indicates the QCD phase transition; values for Tkd inside

or above this band should be interpreted as upper bounds on the decoupling temperature

since the scattering with some of the hadronic degrees of freedom was not taken into

account. On the other hand, as the coupling of WIMPs to hadrons is usually smaller

than to leptons, the difference between this upper bound and the actual value of Tkd is

not expected to be very big; note also that the scattering with bound QCD states like,
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.
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Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.
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ONE STEP FURTHER…
Now consider general KD scenario, i.e. coupled temperature and number density evolution: 
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
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NUMERICAL APPROACH
… or one can just solve full phase space Boltzmann eq.
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where the equilibrium number density in the nonrelativistic regime is n
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x).

1

discretization, 

~1000 steps

Solved numerically with MatLab

can be extended to e.g. self-scatterings

very stiff, care needed with numerics

Note:

fully general

expanded in NR and small 
momentum transfer
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With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.
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• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign
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To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄

2
hS

-dependence of ‡SI and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄

≠2
hS

, owing to its de-
pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].

Most of the parameter space excluded, but… even such a simple model is hard to kill
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Annihilation 

processes:

El. scattering 

processes:

resonant non-resonant

with:

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

tabulated 

Higgs width

S

S

h

q,l

q,l

S S

q,l q,l

h

Freeze-out at few GeV        what is the abundance of heavy quarks in QCD plasma?

 two scenarios:
QCD = A - all quarks are free and present in the plasma down to Tc =154 MeV

QCD = B - only light quarks contribute to scattering and only down to 4Tc 26
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RESULTS
EFFECT

effect on relic density:

effect on relic density: 

up to O(~10)

Why such non-trivial shape of the effect of early kinetic decoupling?         

we’ll inspect the y and Y evolution…

kinetic and chemical decoupling:

ratio approaches 1, 
but does not reach it!



mDM = 58 GeV

FULL PHASE-SPACE EVOLUTION
mDM = 62.5 GeV

significant deviation from equilibrium 
shape already around freeze-out

effect on relic density largest, 

both from different T and fDM

large deviations at later times, around 
freeze-out not far from eq. shape

effect on relic density 

~only from different T

black - 

equilibrium 


at TDM

blue - full 
solution for 
fDM at TDM
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even for Z resonance
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distance in mass from the exact condition 
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*calculated with the coupled BEs method
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B)    Boltzmann suppression of SM as strong as for DM
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FORBIDDEN DARK MATTER

DM is a thermal relic that annihilates only to heavier states 
(forbidden in zero temperature)
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kinetic and chemical 
decoupling close

Annihilation 
threshold

velocity 
dependence

”heavy” SM 
particle

scattering 

rate low

…, D’Agnolo, Ruderman ’15, …
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FIG. 1. The left panel contains Feynman diagrams relevant for (1) the relic density, (2) self-interactions, (3) indirect detection,
and (4) direct detection. The right panel shows the relic density, ⌦ h

2, as a function of the mass splitting � ⌘ (m�d �m )/m .
The red (blue) curves correspond to m = 1 GeV (MeV) and the solid (dashed) curves correspond to ↵d = 0.1 (10�3).

Relic Density: The relic density of Forbidden DM is
determined by the solution of its Boltzmann equation,

ṅ + 3Hn = �
⌦
�  ̄ v

↵
n

2
 + h��d�d vi (neq

�d
)2, (2)

where n ,�d are the number densities, H is the Hubble
parameter, h�  ̄(�d�d) vi denotes the thermally averaged
(inverse-)annihilations, and we have assumed that �d re-
mains in equilibrium during freeze-out. The solution is
approximately given by Eq. (1), with the annihilation
rate given by

⌦
�  ̄ v

↵
. For simplicity, Eq. (1) neglects

the dependence on the number of relativistic degrees of
freedom and the freeze-out temperature. These e↵ects
are included in our numerical results (for a more precise
analytic treatment see Refs. [1, 23]).

We now introduce a new and simple prescription for
computing the thermal average of the forbidden annihi-
lation rate. Detailed balance states that the right-hand
side of Eq. (2) vanishes in equilibrium, n = n

eq
 . There-

fore, the forbidden annihilation rate is related to the rate
of the inverse process, which proceeds at 0 temperature,
h��d�d vi ⇠ ↵

2
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where � ⌘ (m�d � m )/m is the rela-
tive mass splitting, x ⌘ m /T , and f� ⌘�
�3/2(2 + �)3/2(2 + �(2 + �)

�
/(1 + �)4. The ex-

ponential suppression comes from the form of the
equilibrium number density for non-relativistic species,
neq = g(mT/2⇡)3/2 exp(�m/T ), where g = 2 (3) for
 (�d), and we have assumed zero chemical potential.
Note that the approximation of the forbidden cross sec-
tion in Ref. [8] has an incorrect exponential dependence
on �x.

We obtain the forbidden relic density by plugging
Eq. (3) into Eq. (1) and integrating the cross section

from freeze-out to the present in order to account for
annihilations after freeze-out (see for example Ref. [23]),

⌦ h
2
⇡ 0.1 g�(xf )

m
2
 /↵

2
d

(20 TeV)2
e
2�xf , (4)

where xf ⌘ m /Tf ⇠ 10 � 25 and g�(xf ) ⌘

(4⇡f�)�1(1 � 2�xfe
2�xf

R 1
2�xf

t
�1

e
�t

dt)�1 is an O(1)

function. Note that we indicate with ⌦ h
2 the total relic

density of  and  ̄. Eq. (4) shows that the forbidden relic
density is exponentially enhanced as � increases. Equiv-
alently, fixing the relic density to the observed value, the
DM mass is exponentially lighter than the weak scale.

We show the relic density, as a function of �, in the
right panel of Fig. 1. Our numerical results here, and
throughout this letter, utilize MicrOMEGASv4 [24] to solve
the Boltzmann equations and we have verified that they
agree with Eq. (4). The left of the figure, � < 0, corre-
sponds to the conventional case where the relic density is
too small for light DM masses. As we enter the forbidden
region, � > 0, the relic density exponentially increases
until it achieves the correct value. The standard lore is
that forbidden channels are only relevant in highly de-
generate scenarios, � ⌧ 1 (this was stated by Ref. [8]
which implicitly assumes weak scale DM). However, we
see from Fig. 1 that light DM calls for an O(1) splitting.

On the left side of Fig. 2, we show the value of � that
corresponds to the observed DM abundance, as a func-
tion of the DM mass. For m > 1 MeV, we assume
that the dark sector is in thermal contact with the SM,
Tdark = TSM . Lighter masses require DM to be ther-
mally decoupled and cooler, Tdark < TSM , due to con-
straints on the number of relativistic degrees of freedom
from Big Bang Nucleosynthesis (BBN) [25, 26] and the
CMB [11]. For m < 1 MeV, we adopt a decoupled dark
sector scenario, consistent with these constraints, that
we describe below. We find that DM masses down to
the keV scale are accommodated (DM with a sub-keV
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FORBIDDEN DARK MATTER
EXAMPLE EFFECT ON EARLY KD ON RELIC DENSITY
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*calculated with the coupled BEs method
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C)    Scatterings and annihilation have different structure
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DARK MATTER SEMI-ANNIHILATION
AND ITS SIMPLEST REALIZATION 

see also Cai, Spray 1807.00832 

Z3 complex scalar singlet:

just above the Higgs threshold semi-annihilation dominant!
Belanger, Kannike, Pukhov, Raidal ’13

very weak 

elastic scatterings

semi-annihilation 
by itself does not 
equilibrate DM

self-heating!
but rather leads to

implications for 
ID

D’Eramo, Thaler ’10; …

DM

DM SM

DMDM is a thermal relic but with freeze-out governed 
by the semi-annihilation process

These developments are especially relevant precisely in the regions that are still allowed

by the experimental data and where the improved precision of theoretical predictions is

required for robust claims of exclusion of the whole parameter space of the thermal Z3

singlet dark matter model.

The aim of this paper is to provide a timely update of the past results [53]. While the

unitarity constraints are often computed in the limit of infinite energy, we calculate them

at finite energy with the help of the latest version [75] of the SARAH package [77–80].

We use the one-loop e↵ective potential to calculate the bounds of absolute stability and

metastability of the EW minimum from the tunnelling rate with the help of the AnyBubble

package [81].1 These constraints, in particular the one from the unitarity, put an upper

bound on the singlet cubic self-coupling and therefore on the semi-annihilation cross section.

We take into account early kinetic decoupling around the Higgs resonance and for large

semi-annihilation, and use the micrOMEGAs code [83] to calculate relic density in the

larger part of the parameter space. The micrOMEGAs is also used to compute predictions

for direct and indirect detection signals. A large part of the parameter space is already

ruled out by XENON1T [47]. Thanks to the new unitarity constraints, we manage to

further restrict the model.

We introduce the model in section 2. Various theoretical and experimental constraints

are considered in section 3. Dark matter freeze-out, the impact of early kinetic decoupling

and semi-annihilation are studied in section 4. Section 5 discusses prospects of direct and

indirect detection of dark matter. We conclude in section 6. Details of the field-dependent

masses and counter-terms for the e↵ective potential are given in the appendix A.

2 The model

The most general renormalisable scalar potential of the Higgs doublet H and the complex

singlet S, invariant under the Z3 transformation H ! H, S ! e
i2⇡/3

S, is given by

V = µ
2

H |H|2 + �H |H|4 + µ
2

S |S|2 + �S |S|4 + �SH |S|2 |H|2 + µ3

2
(S3 + S

†3). (2.1)

This is the only possible potential with this field content and symmetry. Without loss of

generality, we can take µ3 real and non-negative.

The mass of the Higgs boson is Mh = 125.09 GeV [84] and the Higgs vacuum expec-

tation value (VEV) v = 246.22 GeV. We fix the parameters

µ
2

H = �
M

2

h

2
,

�H =
1

2

M
2

h

v2
,

µ
2

S = M
2

S � �SH

v
2

2
.

(2.2)

Dark matter mass MS , the Higgs portal �SH , the singlet cubic coupling µ3 and the singlet

quartic self-coupling �S are left as free parameters.

1
The first-order phase transition from thermal tunnelling into the EW minimum can produce a measur-

able gravitational wave signal, but only in a parameter space region with DM underdensity [82].

– 3 –
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SEMI-ANNIHILATION
EXAMPLE EFFECT ON EARLY KD ON RELIC DENSITY
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self-heating!

effect on 

relic density: 
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Note: here the final effect is relatively mild (though still larger than the observational error), but only because in the 
simplest model the velocity dependence of annihilation is mild as well…

http://hep-ph/1901.08074
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1. One needs to remember that kinetic equilibrium is a 
necessary assumption for standard relic density calculations

2. Coupled system of Boltzmann equations for 0th and 2nd 
moments allow for a very accurate treatment of the kinetic 
decoupling and its effect on relic density

3. In special cases the full phase space Boltzmann equation can 
be necessary — especially if one wants to trace DM 
temperature as well

…a step towards more fundamental and reliable 

relic density determination
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IMPLICATIONS OF KINETIC DECOUPLING

Torsten Bringmann, University of Hamburg ‒Thermal decoupling of WIMPs

The smallest protohalos
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gravitationally bound 
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Free streaming of WIMPs 
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contrasts on small scales

tkd

Strong dependence on particle physics properties, 
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Bertschinger, PRD ’06
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E.g. for SUSY neutralino:
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„Typical” values for WIMPs are relatively small  small substructures expected

but bad for missing satellites problem

moment of KD leaves important imprint on the Universe) 39
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γ
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Figure 6: LEFT: Evolution, due to annihilation/creation, of the DM phase-
space distribution, f(r, x), from an initial distribution with two bumps (blue
line) at r = 20 to three later times r = 20.001, 20.01, 20.1 (red lines). The
equilibrium distribution at r = 20.1 from Eq. (8) is shown by the black line.
As displayed by the integrated number density (“int =

∫

x2f(r, x)dx”) the
comoving number density is not conserved when DM annihilation/creation
is present.

full-phase space setup however uses the non-relativistic f eq
n.r. (required

by our scattering term). Nevertheless, for the cγ = 0 setup, we can still
consistently use the relativistic f eq. Implementing f eq (temporarily)
reveals that exact agreement, to 3 digits, Ωh2 = 0.0809 is achieved.

In Fig. 7 we present the full phase space distribution (right panel) and
the integrated relic density Yχ derived from Eq. (24) (left panel). It is worth
to point out that this is already a deviation from the standard calculation
— as the phase space distribution differs from equilibrium during freeze-out.
Adding a scattering term would of course drive the momentum distribu-
tion towards the equilibrium distribution, as demonstrated in the previous
section, and for S-wave the f(x) distribution does not impact the relic abun-
dance result. I did not investigate if already this phase-space distribution
deviates from ∝ f eq

n.r.(rf.o., x), where rf.o. is some suitable freeze-out temper-
ature. Decreasing the initial time r0 < 20 did not change the phase space
result, showing that starting at r = 20 is sufficient also for the kinetic freeze-

12

we have already seen that even if scatterings 
were very inefficient compared to annihilation, 
departure from equilibrium for both Y and y 
happened around the same time…

Obvious issue: 

How to define exactly the kinetic and chemical decouplings and what is the significance of such definitions?

Improved question:
Can kinetic decoupling happen much earlier than chemical?

)
turn off scatterings and take s-wave annihilation;

look at local disturbance

annihilation/production precesses drive to 

restore kinetic equilibrium!
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our work wasn’t the first to realize that resonant annihilation can lead to early kinetic decoupling…

… but we developed a dedicated accurate method/code to deal with this and other similar situations

Feng, Kaplinghat, Yu ’10 — noted that for Sommerfeld-type resonances KD can happen early

Dent, Dutta, Scherrer ’10 — looked at potential effect of KD on thermal relic density

Since then people were aware of this 
effect and sometimes tried to estimate it 
assuming instantaneous KD, e.g., in the 
case of Sommerfeld effect in the MSSM:

A
H

, Iengo, U
llio ’11

but no systematic studies of decoupling 
process were performed, until… 

…models with very late KD become popular, in part to solve „missing satellites” problem
van den Aarssen et al ’12; Bringmann et al ’16, x2; Binder et al ’16

this progress allowed for better approach to early KD scenarios as 
well and was applied to the resonant annihilation case in

Duch, Grządkowski ’17
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SCATTERING
The elastic scattering collision term:

2

tion II B), and finally introduce our framework for a fully
numerical solution (Section IIC). Section III is devoted
to a thorough application of these methods to the Scalar
Singlet model. We comment on our results in Section IV,
and discuss potential other areas of application, before we
conclude in Section V. In two Appendices we discuss in
detail the evolution of the Singlet DM phase-space den-
sity for selected parameter points (App. A) and comment
on the semi-relativistic form of the scattering operator in
the Boltzmann equation (App. B).

II. THERMAL PRODUCTION OF DARK
MATTER

Let us denote the DM particle by �, and its phase-
space density by f�(t,p). The evolution of f� is gov-
erned by the Boltzmann equation which, in an expand-
ing Friedmann-Robertson-Walker universe, is given by
[17, 18]

E (@t �Hp ·rp) f� = C[f�] . (1)

Here, H = ȧ/a is the Hubble parameter, a the scale fac-
tor, and the collision term C[f�] contains all interactions
between DM and SM particles f . For WIMPs, we are
to leading order interested in two-body processes for DM
annihilation and elastic scattering, C = Cann+Cel, where
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1
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In the above expressions, |M|
2 refers to the respective

squared amplitude, summed over all spin and other in-
ternal degrees of freedom, as well as all SM particles f .
We assume the SM particles to be in thermal equilib-
rium, such that their phase-space distribution is given
by g

±(!) = 1/ [exp(!/T )± 1]. Note that we have ne-
glected Bose enhancement and Pauli blocking factors for
f� here, as we assume DM to be nonrelativistic; momen-
tum conservation then implies that, in Cann, we can also
neglect these factors for the SM particles.

Assuming CP invariance, and using the fact that in
thermal equilibrium annihilation and creation processes
should happen with the same frequency, the annihilation
term given by Eq. (2) can be further simplified to [9]

Cann = g�E

Z
d
3
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(2⇡)3
v��̄�!f̄f
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h
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, (4)

where v = vMøl ⌘ (EẼ)�1[(p · p̃)2 �m
4
�]

1/2 is the Møller
velocity, which in the rest frame of one of the DM
particles coincides with the lab velocity vlab = [s(s �

4m2
�)]

1/2
/(s� 2m2

�).
The scattering term, on the other hand, is in general

considerably more di�cult to manage. Analytic expres-
sions have, however, been obtained in the highly non-
relativistic limit of the DM particles, and assuming that
the momentum transfer in the scattering process is much
smaller than the DM mass [12, 18–22]:
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R
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cos ✓)d�/d⌦ is the standard transfer cross section for
elastic scattering. In Appendix B, we discuss how
the scattering term is expected to change in the semi-
relativistic case, i.e. when the assumption of highly non-
relativistic DM is slightly relaxed. For reference, we will
in the following use
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when explicitly addressing this regime.

A. The standard treatment

In order to calculate the DM relic abundance, we can
integrate the Boltzmann Eq. (1) over p. This results in

dn�

dt
+ 3Hn� = g�

Z
d
3
p

(2⇡)3E
Cann[f�] , (9)

which has to be solved for the DM number density

n� = g�

Z
d
3
p/(2⇡)3 f�(p) (10)

(note that Cel vanishes once it is integrated over). In
order to evaluate the r.h.s. of this equation, the usual
assumption [9] is that during chemical freeze-out one can
make the following ansatz for the DM distribution:

f� = A(T )f�,eq =
n�

n�,eq
f�,eq , (11)

Expanding in NR and small momentum 
transfer:
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i
, (4)

where v = vMøl ⌘ (EẼ)�1[(p · p̃)2 �m
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A. The standard treatment

In order to calculate the DM relic abundance, we can
integrate the Boltzmann Eq. (1) over p. This results in
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which has to be solved for the DM number density
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Z
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p/(2⇡)3 f�(p) (10)

(note that Cel vanishes once it is integrated over). In
order to evaluate the r.h.s. of this equation, the usual
assumption [9] is that during chemical freeze-out one can
make the following ansatz for the DM distribution:

f� = A(T )f�,eq =
n�

n�,eq
f�,eq , (11)
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portion of phase-space, with almost vanishing relative
DM momenta. This implies not only that we always have
h�vi > h�vi2 in this regime, but also that the e↵ect of
the resonance rapidly becomes negligible.

Lastly, it is interesting to note that for
p
s & mh

the annihilation rate e↵ectively features a 1/v2 veloc-
ity dependence. This is similar to resonant Sommerfeld-
enhanced annihilation, which leads to a suppressed relic
density after a prolonged freeze-out phase [30]. This
can clearly be seen in the evolution of Y (x) in Fig. 6,
for mS ⇠ mh/2, where the di↵erences between the nu-
merical and the coupled Boltzmann approach are mostly
due to the late-time di↵erences in y(x) – which in turn
come about because of the rather significant di↵erences
in f�(q) at large values of x (c.f. Fig. 5).

Appendix B: Semi-relativistic kinetic theory

In this Appendix, we discuss how to generalize the
highly non-relativistic elastic scattering term in Eq. (5)
to incorporate the most important relativistic correc-
tions needed for the numerical implementation of the full
Boltzmann equation. Throughout, we refer to this result
as ‘semi-relativistic’ scattering.

The starting point is to expand the full collision term
Cel in small momentum transfer compared to the typi-
cal DM momentum – similar to what is done in order
to arrive at Eq. (5), but not only keeping lowest-order
terms in p2

/m
2
� ⇠ T/m�. From this, we can derive a

Fokker-Planck scattering operator in a relativistic form
(for details, see [21]):

Cel '
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2
rp ·

"
�(T,p) (ETrp + p) f�

#
. (B1)

Being a total divergence, this scattering operator man-
ifestly respects number conservation, as it should. An-
other important property, which one can directly read
o↵ from the part inside the brackets, is that it fea-
tures a stationary point given by the relativistic Maxwell-
Boltzmann distribution,

f
eq
� / e

�E/T
. (B2)

The non-relativistic limit of Eq. (B1) gives the scat-
tering operator (5), but in this limit the stationary
point would instead be the non-relativistic version f

eq
� /

exp[�p
2
/(2m�T )] — which would cause a problem in

the full BE as this does not correspond to the actual
equilibrium distribution fed into the annihilation term of
Eq. (37).

In general, the momentum transfer rate �(T,p) in
Eq. (B1) depends on the DM momentum p. However,
the stationary point is independent of �, which moti-
vates us to restrict ourselves to the leading order term
�(T ) ⌘ �(T,0), neglecting any momentum dependence,
and use the non-relativistic limit in Eq. (B1) only to eval-
uate the momentum transfer rate �(T ) as it appears in

Eq. (6). To this order, we could thus also replace the
leading E in Eq. (B1) by m�; here, we choose to still
keep it as it leads to a much more compact analytical
form of the equation governing the DM temperature (see
below). Explicitly performing the first partial derivative
in Cel then leads to the final form of our semi-relativistic
Fokker-Planck operator as given by Eq. (8). This opera-
tor is our default choice for the numerical implementation
of the full Boltzmann equation.
As already pointed out in Section IIC, it is manda-

tory for the full phase-space calculation to have a scat-
tering operator with a fixpoint that matches the equilib-
rium distribution of Eq. (B2) assumed in the annihilation
term. For the coupled integrated Boltzmann system, on
the other hand, this issue is fully addressed by using the
relativistic temperature definition of Eq. (21) — rather
than its non relativistic version typically adopted in the
literature in the context of kinetic decoupling — because
this automatically leads to the correct fixpoint T� = T

for both the semi-relativistic Eq. (8) and, to the lowest
order, for the non-relativistic version Eq. (5); see the dis-
cussion in Section II B.
Another advantage of our semi-relativistic Fokker-

Planck operator is that the di↵erential equation for T�,
often quoted when discussing kinetic decoupling, takes a
very simple form even beyond the highly non-relativistic
limit. To see this, let us for the moment ignore the im-
pact of annihilations, and take the second moment of the
Boltzmann equation with this operator (using the rela-
tivistic definition of T�). This leads to
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which of course is equivalent to Eq. (28) in the main text,
when neglecting the annihilation terms and implement-
ing the replacement given in Eq. (35). Let us repeat that
the r.h.s. of the above equation only takes this particu-
lar form with our default choice of the semi-relativistic
Fokker-Planck term, whereas the moment appearing on
the left hand side is an exact result. This equation is in
general not closed in terms of T�. However, if we make
the ansatz of a Maxwellian DM phase-space distribution,
c.f. Eq. (34), we get a relation between the di↵erent mo-
mentum moments,

5hp2/E2
i � 2hp4/E4

i = hp
4
/E

3
i/T�, (B4)

such that the di↵erential equation closes in terms of T�.
Indeed, introducing

2(1� w) ⌘
g�

3T�n�

Z
d
3
p

(2⇡)3
p4

E3
f�(p) =

hp
4
/E

3
i

3T�
, (B5)

it takes a very simple form:

Ṫ� + 2w(T�)HT� = w(T�)�(T ) (T � T�) . (B6)

More generally, Fokker-Planck scattering operator 
(relativistic, but still small momentum transfer):

equilibrium functions for SM particles

Semi-relativistic: assume that scattering 
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portion of phase-space, with almost vanishing relative
DM momenta. This implies not only that we always have
h�vi > h�vi2 in this regime, but also that the e↵ect of
the resonance rapidly becomes negligible.

Lastly, it is interesting to note that for
p
s & mh

the annihilation rate e↵ectively features a 1/v2 veloc-
ity dependence. This is similar to resonant Sommerfeld-
enhanced annihilation, which leads to a suppressed relic
density after a prolonged freeze-out phase [30]. This
can clearly be seen in the evolution of Y (x) in Fig. 6,
for mS ⇠ mh/2, where the di↵erences between the nu-
merical and the coupled Boltzmann approach are mostly
due to the late-time di↵erences in y(x) – which in turn
come about because of the rather significant di↵erences
in f�(q) at large values of x (c.f. Fig. 5).

Appendix B: Semi-relativistic kinetic theory

In this Appendix, we discuss how to generalize the
highly non-relativistic elastic scattering term in Eq. (5)
to incorporate the most important relativistic correc-
tions needed for the numerical implementation of the full
Boltzmann equation. Throughout, we refer to this result
as ‘semi-relativistic’ scattering.

The starting point is to expand the full collision term
Cel in small momentum transfer compared to the typi-
cal DM momentum – similar to what is done in order
to arrive at Eq. (5), but not only keeping lowest-order
terms in p2

/m
2
� ⇠ T/m�. From this, we can derive a

Fokker-Planck scattering operator in a relativistic form
(for details, see [21]):

Cel '
E

2
rp ·

"
�(T,p) (ETrp + p) f�

#
. (B1)

Being a total divergence, this scattering operator man-
ifestly respects number conservation, as it should. An-
other important property, which one can directly read
o↵ from the part inside the brackets, is that it fea-
tures a stationary point given by the relativistic Maxwell-
Boltzmann distribution,

f
eq
� / e

�E/T
. (B2)

The non-relativistic limit of Eq. (B1) gives the scat-
tering operator (5), but in this limit the stationary
point would instead be the non-relativistic version f

eq
� /

exp[�p
2
/(2m�T )] — which would cause a problem in

the full BE as this does not correspond to the actual
equilibrium distribution fed into the annihilation term of
Eq. (37).

In general, the momentum transfer rate �(T,p) in
Eq. (B1) depends on the DM momentum p. However,
the stationary point is independent of �, which moti-
vates us to restrict ourselves to the leading order term
�(T ) ⌘ �(T,0), neglecting any momentum dependence,
and use the non-relativistic limit in Eq. (B1) only to eval-
uate the momentum transfer rate �(T ) as it appears in

Eq. (6). To this order, we could thus also replace the
leading E in Eq. (B1) by m�; here, we choose to still
keep it as it leads to a much more compact analytical
form of the equation governing the DM temperature (see
below). Explicitly performing the first partial derivative
in Cel then leads to the final form of our semi-relativistic
Fokker-Planck operator as given by Eq. (8). This opera-
tor is our default choice for the numerical implementation
of the full Boltzmann equation.
As already pointed out in Section IIC, it is manda-

tory for the full phase-space calculation to have a scat-
tering operator with a fixpoint that matches the equilib-
rium distribution of Eq. (B2) assumed in the annihilation
term. For the coupled integrated Boltzmann system, on
the other hand, this issue is fully addressed by using the
relativistic temperature definition of Eq. (21) — rather
than its non relativistic version typically adopted in the
literature in the context of kinetic decoupling — because
this automatically leads to the correct fixpoint T� = T

for both the semi-relativistic Eq. (8) and, to the lowest
order, for the non-relativistic version Eq. (5); see the dis-
cussion in Section II B.
Another advantage of our semi-relativistic Fokker-

Planck operator is that the di↵erential equation for T�,
often quoted when discussing kinetic decoupling, takes a
very simple form even beyond the highly non-relativistic
limit. To see this, let us for the moment ignore the im-
pact of annihilations, and take the second moment of the
Boltzmann equation with this operator (using the rela-
tivistic definition of T�). This leads to
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which of course is equivalent to Eq. (28) in the main text,
when neglecting the annihilation terms and implement-
ing the replacement given in Eq. (35). Let us repeat that
the r.h.s. of the above equation only takes this particu-
lar form with our default choice of the semi-relativistic
Fokker-Planck term, whereas the moment appearing on
the left hand side is an exact result. This equation is in
general not closed in terms of T�. However, if we make
the ansatz of a Maxwellian DM phase-space distribution,
c.f. Eq. (34), we get a relation between the di↵erent mo-
mentum moments,

5hp2/E2
i � 2hp4/E4

i = hp
4
/E

3
i/T�, (B4)

such that the di↵erential equation closes in terms of T�.
Indeed, introducing

2(1� w) ⌘
g�

3T�n�

Z
d
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p

(2⇡)3
p4

E3
f�(p) =

hp
4
/E

3
i
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, (B5)

it takes a very simple form:

Ṫ� + 2w(T�)HT� = w(T�)�(T ) (T � T�) . (B6)

is momentum independent
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