NON-EQUILIBRIUM EFFECTS in the evolution of Dark Matter

Andrzej Hryczuk

based on: T. Binder, T. Bringmann, M. Gustafsson and AH $\underline{1706.07433}$
A. Hektor, AH and K. Kannike 1901.08074

+ work in progress with T. Binder, T. Bringmann, M. Gustafsson

Dark Matter

I. We know nearly nothing at all about dark matter
(we don't know what it is)
2. We know quite a lot about dark matter
(but we know what it isn't)

Dark Matter

I don't think there is any need for convincing you that DM exists...

\Rightarrow Evidence on all scales!
... but perhaps I should argue why particle DM

Particle Dark Matter

We know that the Standard Model (of particle physics) in not complete*
its extension could in principle be extremely minimal... but it is far more likely that there are (many?) new particles we do not know yet \downarrow
it is quite possible that some of them are stable and then they are a dark matter
if so it is very natural to expect that they constitute the dark matter

particle DM in not an anomaly it is a generic prediction (at least on a qualitative level)

July 2012 - the Higgs boson

since then:

but then we knew sth is there: vide so-called unitarization of the WW scattering cross section

Now, after the Higgs was found - The Hierarchy Problem

$$
\Delta m_{h}^{2}=\frac{3 \Lambda^{2}}{8 \pi^{2} v^{2}}\left[4 m_{t}^{2}-2 m_{W}^{2}-m_{Z}^{2}-m_{h}^{2}\right]+\mathcal{O}\left(\log \frac{\Lambda}{v}\right)
$$

or in other words: why is the Higgs boson so light?

The Origin of Dark Matter AND THE „WIMP MIRACLE"

Dark matter could be created in many different ways...
...but every massive particle with not-too-weak interactions with the SM will be produced thermally, with relic abundance:

$T \uparrow$| $\Gamma_{\mathrm{ann}}>H$ |
| :--- |
| $\Gamma_{\mathrm{ann}} \sim H$ |
| $\Gamma_{\mathrm{ann}}<H$ |

DM in equilibrium chemical decoupling
freeze-out

$$
\Omega_{\chi} h^{2} \approx 0.1 \frac{3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\langle\sigma v\rangle}
$$

This is dubbed the WIMP miracle because it coincidentally seem to point at the same energy scale as suggested by the Hierarchy Problem

Lee, Weinberg '77; + others

WIMP DETECTION

Current Limits and decline of The Wimp paradigm

"The great tragedy of science - the slaying of a beautiful hypothesis by an ugly fact"

Aldous Huxley

On both Direct Detection and LHC front no* signal of DM particle!

... BUT IN FACT WIMP NOT EVEN SLIGHTLY DEAD

Most of the (strongest) limits are based on assumptions motivated by theoretical prejudice (or convenience)

Time for a New Paradigm?

A New Era in the Quest for Dark Matter

Gianfranco Bertone ${ }^{1}$ and Tim M.P. Tait ${ }^{1,2}$
ABSTRACT

There is a growing sense of 'crisis' in the dark matter community, due to the absence of evidence for the most popular candidates such as weakly interacting massive particles, axions, and sterile neutrinos, despite the enormous effort that has gone into searching for these particles. Here, we discuss what we have learned about the nature of dark matter from past experiments, and the implications for planned dark matter searches in the next decade. We argue that diversilying the experimental elfort, incorporating astronomical surveys and gravitational wave observations, is our best hope to make progress on the dark matter problem.

From HEP perspective it all may feel quite depressing...

(...) the new guiding principle should be "no stone left unturned".
i.e. test all ideas in all possible ways...
... but precision cosmology \& astrophysics has a potential to provide the so-much needed observational input and show which way to follow

OutLine

I. Introduction

- standard approach to thermal relic density
- recent novel models/ideas

2. Kinetic decoupling

- freeze-out vs. decoupling
- significance for cosmology

3. \boldsymbol{n}-th Exception

- early kinetic decoupling with
- velocity dependent annihilation

4. Summary

Motivation Thermal Relic Density

Theory:

I. Natural

Comes out automatically from the expansion of the Universe
Naturally leads to cold DM
II. Predictive

No dependence on initial conditions
Fixes coupling(s) \Rightarrow signal in DD, ID \& LHC
III. It is not optional

Overabundance constraint
To avoid it one needs quite significant deviations from standard cosmology

Experiment:

. . as a constraint:

. . as a target:

"(...) besides the Higgs boson mass measurement and LHC
direct bounds, the constraint showing by far the strongest
impact on the parameter space of the MSSM is the relic
density"
Roszkowski et al. 'I 4

Thermal Relic Density STANDARD APPROACH

time evolution of $f_{\chi}(p)$ in kinetic theory:

Thermal ReLic Density STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\mathcal{C}\left[f_{\chi}\right]
$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...
.for derivation from thermal QFT see e.g., I409.3049

Critical assumption:

kinetic equilibrium at chemical decoupling

$$
f_{\chi} \sim a(\mu) f_{\chi}^{\mathrm{eq}}
$$

Historical Prelude
 THREE EXCEPTIONS Griest \& Seckel '9।

I. Co-annihilations
if more than one state share a conserved quantum number making DM stable

$$
\begin{aligned}
&\left\langle\sigma_{\mathrm{eff}} \mathrm{~V}\right\rangle=\sum_{i j}\left\langle\sigma_{i j} \mathrm{v}_{i j}\right\rangle \frac{n_{i}^{\mathrm{eq}} n_{j}^{\mathrm{eq}}}{n_{\mathrm{eq}}^{2}} \\
& \text { with: } \sigma_{i j}=\sum_{X} \sigma\left(\chi_{i} \chi_{j} \rightarrow X\right) \\
& \text { e.g., SUSY }
\end{aligned}
$$

2. Annihilation to forbidden channels
if DM is slightly below mass threshold for annihilation
 „forbidden" channel can still be accessible in thermal bath
recent e.g., I 505.07 I07
3. Annihilation near poles
expansion in velocity
(s-wave, p-wave, etc.) not safe

Thermal Relic Density MODERN "EXCEPTIONs"

I. Non-standard cosmology
many works... very recent e.g., D'Eramo, Fernandez, Profumo 'I7
2. Bound State Formation
recent e.g., Petraki at al. ' $15,{ }^{\prime}$ 'I6; An et al. ' 15 , 'I 6 ; Cirelli et al. ' $16 ; \ldots$
3. $3 \rightarrow 2$ and $4 \rightarrow 2$ annihilation
e.g., D'Agnolo, Ruderman 'I5; Cline at al. ' 17 ; Choi at al. 'I7; ...
4. Second era of annihilation

$$
\text { Feng et al.' } 10 ; \text { Bringmann et al. ' } 12 ; \ldots
$$

5. Semi-annihilation

D'Eramo,Thaler 'IO; ...
6. Cannibalization
e.g., Kuflik et al. 'I5; Pappadopulo et al. 'I6; ...
7. ...
...in other words: whenever studying non-minimal scenarios "exceptions" appear

WHAT IF NON-MINIMAL SCENARIO?

Example: assume two particles in the dark sector: A and B

Freeze-out vs. Decoupling

annihilation

$\sum_{\text {spins }}\left|\mathcal{M}^{\text {pair }}\right|^{2}=F\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right)$
(elastic) scattering

$\sum_{\text {spins }}\left|\mathcal{M}^{\text {scatt }}\right|^{2}=F\left(k,-k^{\prime}, p^{\prime},-p\right)$

Boltzmann suppression of DM vs. SM $\quad \Rightarrow$
scatterings typically more frequent
dark matter frozen-out but typically still kinetically coupled to the plasma

Schmid, Schwarz, Widern '99; Green, Hofmann, Schwarz '05

Recall: in standard thermal relic density calculation:

Critical assumption:

kinetic equilibrium at chemical decoupling

$$
f_{\chi} \sim a(\mu) f_{\chi}^{\mathrm{eq}}
$$

Early Kinetic Decoupling?

A necessary and sufficient condition: scatterings weaker than annihilation i.e. rates around freeze-out: $H \sim \Gamma_{\mathrm{ann}} \gtrsim \Gamma_{\text {el }}$

Possibilities:
A)

e.g., resonant annihilation
B) Boltzmann suppression of SM as strong as for DM
e.g., below threshold annihilation (forbidden-like DM)
C) Scatterings and annihilation have different structure
e.g., semi-annihilation, 3 to 2 models,...

How To Describe KD?

All information is in full BE : both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi}=\underset{\longrightarrow}{\mathcal{C}}\left[f_{\chi}\right]
$$ contains both scatterings and annihilation

Kinetic Decoupling 101

DM temperature Definition:

$$
T_{\chi} \equiv \frac{g_{\chi}}{3 m_{\chi} n_{\chi}} \int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} p^{2} f_{\chi}(p) \quad y \equiv \frac{m_{\chi} T_{\chi}}{s^{2 / 3}}
$$

\rightarrow actually: normalized average NR energy - equals temperature at equilibrium
First take consider only temperature evolution - then 2 nd moment of full BE (up to terms p^{2} / m_{χ}^{2}) gives:

$$
\frac{y^{\prime}}{y}=-\frac{Y^{\prime}}{Y}\left(1-\frac{\left\langle\sigma \theta_{\mathrm{rel}}\right\rangle_{2}}{\left\langle\sigma v_{\mathrm{rel}}\right\rangle}\right)-\left(1-\frac{x}{3} \frac{g_{* \mathrm{~S}}^{\prime}}{g_{* \mathrm{~S}}}\right) \frac{2 m_{\chi} c(T)}{H x}\left(1-\frac{y_{\mathrm{eq}}}{y}\right)
$$

where:

$$
\begin{aligned}
& \left\langle\sigma v_{\text {rel }}\right\rangle_{2} \equiv \frac{g_{\chi}^{2}}{3 T m_{\chi} n_{\chi}^{2}} \int \frac{d^{3} p}{(2 \pi)^{3}} \int \frac{d^{3} \tilde{p}}{(2 \pi)^{3}} p^{2} v_{\text {rel }} \sigma_{\bar{\chi} \chi \rightarrow \bar{X} X} f(E) f(\tilde{E}) \\
& \text { impact of annihilation } \\
& c(T)=\frac{1}{12(2 \pi)^{3} m_{\chi}^{4} T} \sum_{X} \int d k k^{5} \omega^{-1} g^{ \pm}\left(1 \mp g^{ \pm}\right) \int_{-4 k^{2}}^{0}(-t) \frac{1}{8 k^{4}}\left|\mathcal{M}_{\mathrm{el}}\right|^{2} \\
& \begin{array}{c}
\text { impact of elastic } \\
\text { scatterings }
\end{array}
\end{aligned}
$$

ONE STEP FURTHER...

Now consider general KD scenario, i.e. coupled temperature and number density evolution:
annihilation and production thermal averages done at different T - feedback of modified y evolution

These equations still assume the equilibrium shape of $f_{\chi}(p)$ - but with variant temperature
or more accurately: that the thermal averages computed with true nonequilibrium distributions don't differ much from the above ones

NUMERICAL APPROACH

... or one can just solve full phase space Boltzmann eq.

$$
\begin{aligned}
\partial_{x} f_{\chi}(x, q)= & \frac{m_{\chi}^{3}}{\tilde{H} x^{4}} \frac{g_{\bar{\chi}}}{2 \pi^{2}} \int d \tilde{q} \tilde{q}^{2} \frac{1}{2} \int d \cos \theta v_{\mathrm{M} \varnothing 1} \sigma_{\bar{\chi} \chi \rightarrow \bar{f} f} \\
& \times\left[f_{\chi, \mathrm{eq}}(q) f_{\chi, \mathrm{eq}}(\tilde{q})-f_{\chi}(q) f_{\chi}(\tilde{q})\right] \\
+ & \frac{2 m_{\chi} c(T)}{2 \tilde{H} x}\left[x_{q} \partial_{q}^{2}+\left(q+\frac{2 x_{q}}{q}+\frac{q}{x_{q}}\right) \partial_{q}+3\right] f_{\chi} \\
+ & \tilde{g} \frac{q}{x} \partial_{q} f_{\chi},
\end{aligned}
$$

fully general
expanded in NR and small momentum transfer (semi-relativistic!)

$$
\frac{m_{\chi}^{3}}{\tilde{H} x^{4}} \frac{g_{\bar{\chi}}}{2 \pi^{2}} \sum_{j=1}^{N-1} \frac{\Delta \tilde{q}_{j}}{2}\left[\tilde{q}_{j}^{2}\left\langle v_{\mathrm{M} \varnothing 1} \sigma_{\bar{\chi} \chi \rightarrow \bar{f} f}\right\rangle_{i, j}^{\theta}\left(f_{i}^{\mathrm{eq}} f_{j}^{\mathrm{eq}}-f_{i} f_{j}\right)\right.
$$

Solved numerically with MatLab

Note:

can be extended to e.g. self-scatterings very stiff, care needed with numerics
discretization, ~ 1000 steps

$$
\partial_{x} f_{i}=
$$

$$
\left.+\tilde{q}_{j+1}^{2}\left\langle v_{\mathrm{M} \varnothing \mathrm{l}} \sigma_{\bar{\chi} \chi \rightarrow \bar{f} f}\right\rangle_{i, j+1}^{\theta}\left(f_{i}^{\mathrm{eq}} f_{j+1}^{\mathrm{eq}}-f_{i} f_{j+1}\right)\right]
$$

$$
+\frac{2 m_{\chi} c(T)}{2 \tilde{H} x}\left[x_{q, i} \partial_{q}^{2}+\left(q_{i}+\frac{2 x_{q, i}}{q_{i}}+\frac{q_{i}}{x_{q, i}}\right) \partial_{q}+3\right] f_{i}
$$

$$
+\tilde{g} \frac{q_{i}}{x} \partial_{q} f_{i}
$$

Example A: Scalar Singlet DM

SCALAR SINGLET DM VERY SHORT INTRODUCTION

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

$$
\mathcal{L}_{S}=\frac{1}{2} \partial_{\mu} S \partial^{\mu} S-\frac{1}{2} \mu_{S}^{2} S^{2}-\frac{1}{2} \lambda_{s} S^{2}|H|^{2} \quad m_{s}=\sqrt{\mu_{S}^{2}+\frac{1}{2} \lambda_{s} v_{0}^{2}}
$$

Most of the parameter space excluded, but... even such a simple model is hard to kill

SCALAR SINGLET DM

 ANNIHILATION VS. SCATTERINGS

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

El. scattering processes:
non-resonant

Freeze-out at few $\mathrm{GeV} \longrightarrow$ what is the abundance of heavy quarks in QCD plasma?

$$
\mathrm{QCD}=\mathrm{A} \text { - all quarks are free and present in the plasma down to } \mathrm{T}_{\mathrm{c}}=154 \mathrm{MeV}
$$

two scenarios:
$\mathrm{QCD}=\mathrm{B}$ - only light quarks contribute to scattering and only down to $4 \mathrm{~T}_{\mathrm{c}}$

RESULTS
 RD CONTOURS

Significant modification of the observed relic density contour in the Scalar Singlet DM model
\longrightarrow larger coupling needed \longrightarrow better chance for closing the last window

Results

Effect

kinetic and chemical decoupling:

ratio approaches 1 , but does not reach it!

Why such non-trivial shape of the effect of early kinetic decoupling?
\longrightarrow we'll inspect the y and Y evolution...

Full phase-space Evolution

$m_{D M}=58 \mathrm{GeV}$

significant deviation from equilibrium shape already around freeze-out
\longrightarrow effect on relic density largest, both from different T and $f_{D M}$
$\mathrm{m}_{\mathrm{DM}}=62.5 \mathrm{GeV}$

large deviations at later times, around freeze-out not far from eq. shape
\longrightarrow effect on relic density
~only from different T

Generic Resonant Annihilation

EXAMPLE EFFECT ON EARLY KD ON RELIC DENSITY

$2 \mathrm{~m}_{\mathrm{DM}}=\mathrm{m}_{\mathrm{R}}$

Example B:
 Forbidden DM

B) Boltzmann suppression of SM as strong as for DM

Forbidden Dark Matter

DM is a thermal relic that annihilates only to heavier states (forbidden in zero temperature)
..., D'Agnolo, Ruderman 'I5, ...

kinetic and chemical
decoupling close

Forbidden Dark Matter

 EXAMPLE EFFECT ON EARLY KD ON RELIC DENSITY

Example C: SEMI-ANNIHILATION

C) Scatterings and annihilation have different structure

Dark Matter Semi-Annihilation AND ITS SIMPLEST REALIZATION

DM is a thermal relic but with freeze-out governed by the semi-annihilation process

D'Eramo,Thaler 'I0; ...

\mathbf{Z}_{3} complex scalar singlet: $V=\mu_{H}^{2}|H|^{2}+\lambda_{H}|H|^{4}+\mu_{S}^{2}|S|^{2}+\lambda_{S}|S|^{4}+\lambda_{S H}|S|^{2}|H|^{2}+\frac{\mu_{3}}{2}\left(S^{3}+S^{\dagger 3}\right)$. just above the Higgs threshold semi-annihilation dominant!

Belanger, Kannike, Pukhov, Raidal 'I3

SEMI-ANNIHILATION

EXAMPLE EFFECT ON EARLY KD ON RELIC DENSITY

Note: here the final effect is relatively mild (though still larger than the observational error), but only because in the simplest model the velocity dependence of annihilation is mild as well...

CONCLUSIONS

I. One needs to remember that kinetic equilibrium is a necessary assumption for standard relic density calculations
2. Coupled system of Boltzmann equations for 0th and 2 nd moments allow for a very accurate treatment of the kinetic decoupling and its effect on relic density
3. In special cases the full phase space Boltzmann equation can be necessary - especially if one wants to trace DM temperature as well
...a step towards more fundamental and reliable relic density determination

BACKUP

Implications of Kinetic Decoupling

Free-streaming of DM after KD washes out density contrasts at small scales (similarly to baryonic oscillations)

E.g. for SUSY neutralino:

Bringmann '09

„Typical" values for WIMPs are relatively small \longrightarrow small substructures expected
\longrightarrow but bad for missing satellites problem
\Rightarrow moment of KD leaves important imprint on the Universe

KD BEFORE CD?

Obvious issue:
How to define exactly the kinetic and chemical decouplings and what is the significance of such definitions?

Improved question:
Can kinetic decoupling happen much earlier than chemical?

we have already seen that even if scatterings were very inefficient compared to annihilation, departure from equilibrium for both Y and y happened around the same time...

turn off scatterings and take s-wave annihilation; look at local disturbance
annihilation/production precesses drive to restore kinetic equilibrium!

Early KD AND RESONANCE

our work wasn't the first to realize that resonant annihilation can lead to early kinetic decoupling...
Feng, Kaplinghat, Yu 'IO — noted that for Sommerfeld-type resonances KD can happen early
Dent, Dutta, Scherrer 'IO - looked at potential effect of KD on thermal relic density

Since then people were aware of this effect and sometimes tried to estimate it assuming instantaneous KD, e.g., in the case of Sommerfeld effect in the MSSM:
but no systematic studies of decoupling process were performed, until...

...models with very late KD become popular, in part to solve „missing satellites" problem van den Aarssen et al ' 12 ; Bringmann et al ' 16 , $\times 2$; Binder et al ' 16
this progress allowed for better approach to early KD scenarios as well and was applied to the resonant annihilation case in

Duch, Grządkowski 'I7
... but we developed a dedicated accurate method/code to deal with this and other similar situations

SCATTERING

The elastic scattering collision term:

$$
\begin{aligned}
& C_{\mathrm{el}}= \frac{1}{2 g_{\chi}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega} \int \frac{d^{3} \tilde{k}}{(2 \pi)^{3} 2 \tilde{\omega}} \int \frac{d^{3} \tilde{p}}{(2 \pi)^{3} 2 \tilde{E}} \\
& \times(2 \pi)^{4} \delta^{(4)}(\tilde{p}+\tilde{k}-p-k)|\mathcal{M}|_{\chi f \leftrightarrow \chi f}^{2} \\
& \times\left[\left(1 \mp g^{ \pm}\right)(\omega) g^{ \pm}(\tilde{\omega}) f_{\chi}(\tilde{\mathbf{p}})-(\omega \leftrightarrow \tilde{\omega}, \mathbf{p} \leftrightarrow \tilde{\mathbf{p}})\right] \\
& \longrightarrow \text { equilibrium functions for } 5 M \text { particles }
\end{aligned}
$$

Expanding in NR and small momentum transfer:

Bringmann, Hofmann '06

$$
C_{\mathrm{el}} \simeq \frac{m_{\chi}}{2} \gamma(T)\left[T m_{\chi} \partial_{p}^{2}+\left(p+2 T \frac{m_{\chi}}{p}\right) \partial_{p}+3\right] f_{\chi}
$$

More generally, Fokker-Planck scattering operator
physical interpretation:
scattering rate

$$
C_{\mathrm{el}} \simeq \frac{E}{2} \nabla_{\mathbf{p}} \cdot\left[\gamma(T, \mathbf{p})\left(E T \nabla_{\mathbf{p}}+\mathbf{p}\right) f_{\chi}\right]
$$

Semi-relativistic: assume that scattering $\gamma(T, \mathbf{p})$ is momentum independent

