Relic Density at NLO the Thermal IR Finiteness

Andrzej Hryczuk

University of Oslo*

Dark Matter at NLO

$\left.\begin{array}{l}\text { Bergstrom '89; Drees et al., } 9306325 ; \\ \text { Ullio \& Bergstrom, } 9707333\end{array}\right\}$ helicity suppression lifting
Bergstrom et al., 0507229; Bringmann et al., 0710.3169
spectral features in indirect searches
Ciafaloni et al., IO09.0224 Cirelli et al., $10 \mid 2.45 \mathrm{I} 5$ Ciafaloni et al., I 202.0692 AH \& lengo, |III.2916
Chatterjee et al., I 209.2328 Harz et al., 12 |2.524
Ciafaloni et al., | 305.639 |
Hermann et al., I404.293|
Boudjema et al., 1403.7459

$$
\Omega_{D M} h^{2}=0.1187 \underset{\text { Planck+WMAP pol.+highL+BAO; | } 303.5062}{ \pm 0.0017 .}
$$

ReLIC Density STANDARD APPROACH

time evolution of $f_{\chi}(p)$ in kinetic theory:

assumptions for using Boltzmann eq: classical limit, molecular chaos,...

ReLIC Density

BOLTZMANN EQ.

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} \sigma_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}\left(n_{\chi} n_{\bar{\chi}}-n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}}\right)
$$

Re-written for the comoving number density:

$$
\begin{aligned}
& \frac{d Y}{d x}=\sqrt{\frac{g_{*} \pi m_{\chi}^{2}}{45 G}} \frac{\left\langle\sigma_{\chi \bar{\chi} \rightarrow i j} \sigma_{\mathrm{rel}}\right\rangle^{\mathrm{eq}}}{x^{2}}\left(Y^{2}-Y_{\mathrm{eq}}^{2}\right) \\
& \lim _{x \rightarrow 0} Y=Y_{\mathrm{eq}} \quad \lim _{x \rightarrow \infty} Y=\mathrm{const}
\end{aligned}
$$

Recipe:
compute LO annihilation cross-section, take a thermal bath average, plug in to BE... and voilà

Fig.: Jungman, Kamionkowski \& Griest, PR'96

Relic Density at NLO

Recall at LO:

$C_{\mathrm{LO}}=-h_{\chi}^{2} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}}\left[f_{\chi} f_{\bar{\chi}}\left(1 \pm f_{i}\right)\left(1 \pm f_{j}\right)-f_{i} f_{j}\left(1 \pm f_{\chi}\right)\left(1 \pm f_{\bar{\chi}}\right)\right]$
crucial point: $\quad p_{\chi}+p_{\bar{\chi}}=p_{i}+p_{j} \Rightarrow f_{\chi}^{\mathrm{eq}} f_{\bar{\chi}}^{\mathrm{eq}} \approx f_{i}^{\mathrm{eq}} f_{j}^{\mathrm{eq}}$
in Maxwell approx.
at NLO both virtual one-loop and 3-body processes contribute:

$$
\begin{aligned}
C_{1-\text { loop }} & =-h_{\chi}^{2} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j}^{1-\text { loop }} v_{\text {rel }}\left[f_{\chi} f_{\bar{\chi}}\left(1 \pm f_{i}\right)\left(1 \pm f_{j}\right)-f_{i} f_{j}\left(1 \pm f_{\chi}\right)\left(1 \pm f_{\bar{\chi}}\right)\right] \\
C_{\text {real }} & =-h_{\chi}^{2} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j \gamma} v_{\text {rel }}\left[f_{\chi} f_{\bar{\chi}}\left(1 \pm f_{i}\right)\left(1 \pm f_{j}\right)\left(1+f_{\gamma}\right)-f_{i} f_{j} f_{\gamma}\left(1 \pm f_{\chi}\right)\left(1 \pm f_{\bar{\chi}}\right)\right]
\end{aligned}
$$

Relic Density at NLO

Recall at LO:

$C_{\mathrm{LO}}=-h_{\chi}^{2} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j} v_{\mathrm{rel}}\left[f_{\chi} f_{\bar{\chi}}\left(1 \pm f_{i}\right)\left(1 \pm f_{j}\right)-f_{i} f_{j}\left(1 \pm f_{\chi}\right)\left(1 \pm f_{\bar{\chi}}\right)\right]$
crucial point: $\quad p_{\chi}+p_{\bar{\chi}}=p_{i}+p_{j} \Rightarrow f_{\chi}^{\mathrm{eq}} f_{\bar{\chi}}^{\mathrm{eq}} \approx f_{i}^{\mathrm{eq}} f_{j}^{\mathrm{eq}}$
in Maxwell approx.
at NLO both virtual one-loop and 3-body processes contribute:

$$
\begin{gathered}
C_{1-\text { loop }}=-h_{\chi}^{2} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j}^{1-\text { loop }} v_{\text {rel }}\left[f_{\chi} f_{\bar{\chi}}\left(1 \pm f_{i}\right)\left(1 \pm f_{j}\right)-f_{i} f_{j}\left(1 \pm f_{\chi}\right)\left(1 \pm f_{\bar{\chi}}\right)\right] \\
C_{\text {real }}=-h_{\chi}^{2} \int \frac{d^{3} \vec{p}_{\chi}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{\bar{\chi}}}{(2 \pi)^{3}} \sigma_{\chi \bar{\chi} \rightarrow i j \gamma} v_{\text {rel }}\left[f_{\chi} f_{\bar{\chi}}\left(1 \pm f_{i}\right)\left(1 \pm f_{j}\right)\left(1+f_{\gamma}\right)-f_{i} f_{j} f_{\gamma}\left(1 \pm f_{\chi}\right)\left(1 \pm f_{\bar{\chi}}\right)\right] \\
p_{\chi}+p_{\bar{\chi}}=p_{i}+p_{j} \pm p_{\gamma} \Rightarrow \begin{array}{c}
\text { photon can be } \\
\text { arbitrarily soft } \\
f_{\gamma} \sim \omega^{-1}
\end{array}
\end{gathered}
$$

Maxwell approx. not valid anymore...
...even bigger problem: T-dependent IR divergence! 5

ReLic Density WHAT REALLY HAPPENS AT NLO?

$$
\begin{aligned}
& C_{\mathrm{NLO}} \sim \int d \Pi_{\chi \bar{\chi} i j} f_{\chi} f_{\bar{\chi}}\left\{\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{LO}}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{NLO} T=0}\right|^{2}+\int d \Pi_{\gamma}\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\right. \\
& \left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{NLO} T \neq 0}\right|^{2}+\int d \Pi_{\gamma}\left[f_{\gamma}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} \gamma \rightarrow i j}\right|^{2}\right)\right. \\
& \left.\left.-f_{i}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} i \rightarrow j \gamma}\right|^{2}\right)-f_{j}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} j \rightarrow i \gamma}\right|^{2}\right)\right]\right\} \\
& -f_{i} f_{j}\left\{\left|\mathcal{M}_{i j \rightarrow \chi \bar{\chi}}^{\mathrm{LO}}\right|^{2}+\left|\mathcal{M}_{i j \rightarrow x \bar{\chi}}^{\mathrm{NLO}=0}\right|^{2}+\int d \Pi_{\gamma}\left|\mathcal{M}_{i j \rightarrow \chi \bar{\gamma} \gamma}\right|^{2}+\right. \\
& \left|\mathcal{M}_{i j \rightarrow x \bar{\chi}}^{\mathrm{NLO} T \neq 0}\right|^{2}+\int d \Pi_{\gamma}\left[f_{\gamma}\left(\left|\mathcal{M}_{i j \rightarrow x \bar{\chi} \gamma}\right|^{2}+\left|\mathcal{M}_{i j \gamma \rightarrow x \bar{\chi}}\right|^{2}\right)\right. \\
& \left.\left.-f_{\chi}\left(\left|\mathcal{M}_{i j \rightarrow \chi \bar{\chi} \gamma}\right|^{2}+\left|\mathcal{M}_{i j \chi \rightarrow \chi \gamma}\right|^{2}\right)-f_{\bar{\chi}}\left(\left|\mathcal{M}_{i j \rightarrow \chi \bar{\chi} \gamma}\right|^{2}+\left|\mathcal{M}_{i j \bar{\chi} \rightarrow \bar{\chi} \gamma}\right|^{2}\right)\right]\right\}
\end{aligned}
$$

Relic Density

WHAT REALLY HAPPENS AT NLO?

$$
\begin{aligned}
C_{\mathrm{NLO}} \sim \int d \Pi_{\chi \bar{\chi} i j} f_{\chi} f_{\bar{\chi}} & \left\{\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{LO}}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{NLO}=0}\right|^{2}+\int d \Pi_{\gamma}\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\right. \\
& \left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{NLO} T \neq 0}\right|^{2}+\int d \Pi_{\gamma}\left[f_{\gamma}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} \gamma \rightarrow i j}\right|^{2}\right)\right. \\
& \left.\left.-f_{i}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} i \rightarrow j \gamma}\right|^{2}\right)-f_{j}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} j \rightarrow i \gamma}\right|^{2}\right)\right]\right\}
\end{aligned}
$$

ReLic Density WHAT REALLY HAPPENS AT NLO?

only this used in NLO literature so far

$$
\begin{aligned}
& C_{\mathrm{NLO}} \sim \int d \Pi_{\chi \bar{\chi} i j} f_{\chi} f_{\bar{\chi}}\left\{\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{LO}}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{NLO} T=0}\right|^{2}+\int d \Pi_{\gamma}\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\right. \\
&\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{NLO} T \neq 0}\right|^{2}+\int d \Pi_{\gamma}\left[f_{\gamma}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} \gamma \rightarrow i j}\right|^{2}\right)\right. \\
&\left.\left.-f_{i}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} i \rightarrow j \gamma}\right|^{2}\right)-f_{j}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} j \rightarrow i \gamma}\right|^{2}\right)\right]\right\}
\end{aligned}
$$

ReLIC Density what Really happens at NLO?

only this used in NLO literature so far

$$
\begin{aligned}
& C_{\mathrm{NLO}} \sim \int d \Pi_{\chi \bar{\chi} i j} f_{\chi} f_{\bar{\chi}}\left\{\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{LO}}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{NLO} T=0}\right|^{2}+\int d \Pi_{\gamma}\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\right. \\
& \longrightarrow\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j}^{\mathrm{NLO} T \neq 0}\right|^{2}+\int d \Pi_{\gamma}\left[f_{\gamma}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} \gamma \rightarrow i j}\right|^{2}\right) \quad \begin{array}{c}
\text { photon } \\
\text { absorption }
\end{array}\right. \\
& \text { thermal } \\
& \text { I-loop } \\
& \left\{\begin{array}{cc}
\left.-f_{i}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} i \rightarrow j \gamma}\right|^{2}\right) \mid-f_{j}\left(\left|\mathcal{M}_{\chi \bar{\chi} \rightarrow i j \gamma}\right|^{2}+\left|\mathcal{M}_{\chi \bar{\chi} j \rightarrow i \gamma}\right|^{2}\right)\right]
\end{array}\right\}
\end{aligned}
$$

QuESTIONS:

Beneke, Dighera, AH, 1409.3049
I. how the (soft and collinear) IR divergence cancellation happen?
2. does Boltzmann equation itself receive quantum corrections?
3. how large are the remaining finite T corrections?

Program: develop a method for relic density calculation directly from QFT and free from IR problems

Closed Time Path FORMALISM

$$
\begin{array}{r}
i \Delta(x, y)=\left\langle T_{C} \phi(x) \phi^{\dagger}(y)\right\rangle, \\
i S_{\alpha \beta}(x, y)=\left\langle T_{C} \psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right\rangle,
\end{array}
$$

contour Green's functions obey Dyson-Schwinger eqs:

$$
\begin{array}{r}
\Delta(x, y)=\Delta_{0}(x, y)-\int_{C} d^{4} z \int_{C} d^{4} z^{\prime} \Delta_{0}(x, z) \Pi\left(z, z^{\prime}\right) \Delta\left(z^{\prime}, y\right), \\
S_{\alpha \beta}(x, y)=S_{\alpha \beta}^{0}(x, y)-\int_{C} d^{4} z \int_{C} d^{4} z^{\prime} S_{\alpha \gamma}^{0}(x, z) \Sigma_{\gamma \rho}\left(z, z^{\prime}\right) S_{\rho \beta}\left(z^{\prime}, y\right),
\end{array}
$$

which can be rewritten in the form of Kadanoff-Baym eqs:

$$
\begin{aligned}
\left(-\partial^{2}-m_{\phi}^{2}\right) \Delta^{\lessgtr}(x, y)-\int d^{4} z\left(\Pi_{h}(x, z) \Delta^{\lessgtr}(z, y)-\Pi^{\lessgtr}(x, z) \Delta_{h}(z, y)\right) & =\mathcal{C}_{\phi}, \\
\left(i \not \partial-m_{\chi}\right) S^{\lessgtr}(x, y)-\int d^{4} z\left(\Sigma_{h}(x, z) S^{\lessgtr}(z, y)-\Sigma^{\lessgtr}(x, z) S_{h}(z, y)\right) & =\mathcal{C}_{\chi},
\end{aligned}
$$

Closed Time Path FORMALISM

$$
\begin{array}{r}
i \Delta(x, y)=\left\langle T_{C} \phi(x) \phi^{\dagger}(y)\right\rangle, \\
i S_{\alpha \beta}(x, y)=\left\langle T_{C} \psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right\rangle,
\end{array}
$$

contour Green's functions obey Dyson-Schwinger eqs:

$$
\begin{array}{r}
\Delta(x, y)=\Delta_{0}(x, y)-\int_{C} d^{4} z \int_{C} d^{4} z^{\prime} \Delta_{0}(x, z) \Pi\left(z, z^{\prime}\right) \Delta\left(z^{\prime}, y\right), \\
S_{\alpha \beta}(x, y)=S_{\alpha \beta}^{0}(x, y)-\int_{C} d^{4} z \int_{C} d^{4} z^{\prime} S_{\alpha \gamma}^{0}(x, z) \Sigma_{\gamma \rho}\left(z, z^{\prime}\right) S_{\rho \beta}\left(z^{\prime}, y\right),
\end{array}
$$

which can be rewritten in the form of Kadanoff-Baym eqs:

$$
\begin{aligned}
\left(-\partial^{2}-m_{\phi}^{2}\right) \Delta^{\lessgtr}(x, y)-\int d^{4} z\left(\Pi_{h}(x, z) \Delta^{\lessgtr}(z, y)-\Pi^{\lessgtr}(x, z) \Delta_{h}(z, y)\right) & =\mathcal{C}_{\phi}, \\
\left(i \not \partial-m_{\chi}\right) S^{\lessgtr}(x, y)-\int d^{4} z\left(\Sigma_{h}(x, z) S^{\lessgtr}(z, y)-\Sigma^{\lessgtr}(x, z) S_{h}(z, y)\right) & =\mathcal{C}_{\chi},
\end{aligned}
$$

Closed Time Path FORMALISM

$$
\begin{array}{r}
i \Delta(x, y)=\left\langle T_{C} \phi(x) \phi^{\dagger}(y)\right\rangle, \\
i S_{\alpha \beta}(x, y)=\left\langle T_{C} \psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right\rangle,
\end{array}
$$

contour Green's functions obey Dyson-Schwinger eqs:

$$
\begin{array}{r}
\Delta(x, y)=\Delta_{0}(x, y)-\int_{C} d^{4} z \int_{C} d^{4} z^{\prime} \Delta_{0}(x, z) \Pi\left(z, z^{\prime}\right) \Delta\left(z^{\prime}, y\right), \\
S_{\alpha \beta}(x, y)=S_{\alpha \beta}^{0}(x, y)-\int_{C} d^{4} z \int_{C} d^{4} z^{\prime} S_{\alpha \gamma}^{0}(x, z) \Sigma_{\gamma \rho}\left(z, z^{\prime}\right) S_{\rho \beta}\left(z^{\prime}, y\right),
\end{array}
$$

which can be rewritten in the form of Kadanoff-Baym eqs:

$$
\begin{aligned}
\left(-\partial^{2}-m_{\phi}^{2}\right) \Delta^{\lessgtr}(x, y)-\int d^{4} z\left(\Pi_{h}(x, z) \Delta^{\lessgtr}(z, y)-\Pi^{\lessgtr}(x, z) \Delta_{h}(z, y)\right) & =\mathcal{C}_{\phi}, \\
\left(i \not \partial-m_{\chi}\right) S^{\lessgtr}(x, y)-\int d^{4} z\left(\Sigma_{h}(x, z) S^{\lessgtr}(z, y)-\Sigma^{\lessgtr}(x, z) S_{h}(z, y)\right) & =\mathcal{C}_{\chi},
\end{aligned}
$$

Closed Time Path FORMALISM

$$
\begin{array}{r}
i \Delta(x, y)=\left\langle T_{C} \phi(x) \phi^{\dagger}(y)\right\rangle, \\
i S_{\alpha \beta}(x, y)=\left\langle T_{C} \psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right\rangle,
\end{array}
$$

contour Green's functions obey Dyson-Schwinger eqs:

$$
\begin{array}{r}
\Delta(x, y)=\Delta_{0}(x, y)-\int_{C} d^{4} z \int_{C} d^{4} z^{\prime} \Delta_{0}(x, z) \Pi\left(z, z^{\prime}\right) \Delta\left(z^{\prime}, y\right), \\
S_{\alpha \beta}(x, y)=S_{\alpha \beta}^{0}(x, y)-\int_{C} d^{4} z \int_{C} d^{4} z^{\prime} S_{\alpha \gamma}^{0}(x, z) \Sigma_{\gamma \rho}\left(z, z^{\prime}\right) S_{\rho \beta}\left(z^{\prime}, y\right),
\end{array}
$$

which can be rewritten in the form of Kadanoff-Baym eqs:

$$
\begin{aligned}
& \left(-\partial^{2}-m_{\phi}^{2}\right) \Delta^{\lessgtr}(x, y)-\int d^{4} z\left(\Pi_{h}(x, z) \Delta^{\lessgtr}(z, y)-\Pi^{\lessgtr}(x, z) \Delta_{h}(z, y)\right)=\mathcal{C}_{\phi} \\
& \left(i \not \partial-m_{\chi}\right) S^{\lessgtr}(x, y)-\int d^{4} z\left(\Sigma_{h}(x, z) S^{\lessgtr}(z, y)-\Sigma^{\lessgtr}(x, z) S_{h}(z, y)\right)=\mathcal{C}_{\chi}
\end{aligned}
$$

Closed Time Path FORMALISM: COLLISION TERM

the fermion collision terms is defined as:

$$
\mathcal{C}_{\chi}=\frac{1}{2} \int d^{4} z \underbrace{\left(\Sigma^{>}(x, z) S^{<}(z, y)\right.}_{\text {self-energies }}-\overline{\left.\Sigma^{<}(x, z) S^{>}(z, y)\right)}
$$

where the propagators:

$$
\begin{aligned}
i S^{c}(p) & =\frac{i(\not p+m)}{p^{2}-m^{2}+i \eta}-2 \pi(\not p+m) \delta\left(p^{2}-m^{2}\right) f\left(p^{0}\right) \\
i S^{a}(p) & =-\frac{i(p p+m)}{p^{2}-m^{2}+i \eta}+2 \pi(\not p+m) \delta\left(p^{2}-m^{2}\right)\left(1-f\left(p^{0}\right)\right) \\
i S^{>}(p) & =2 \pi(\not p+m) \delta\left(p^{2}-m^{2}\right)\left(1-f\left(p^{0}\right)\right) \\
i S^{<}(p) & \left.=-2 \pi(\not p+m) \delta\left(p^{2}-m^{2}\right) f\left(p^{0}\right)\right\} \text { "cut" propagators }
\end{aligned}
$$

the presence of distribution functions inside propagators \Rightarrow known collision term structure

Results

IR DIVERGENCE CANCELLATION: S-WAVE

\Rightarrow every CTP self-energy is IR finite

Results

factorized $\frac{\pi}{6} \alpha \tau^{2} \frac{a_{\text {tree }}}{\epsilon^{2}} \quad$ FINITE T CORRECTION: S-WAVE

The finite part J_{1}		
Type A	Real	Virtual External
$-\square-$	$\frac{2\left(1-\xi^{2}\right)}{D^{2} D_{\xi}^{2}}+\frac{\left(1-2 \epsilon^{2}\right) p_{1}(\epsilon, \xi)}{2 D^{2} D_{\xi}^{2}}+\frac{1}{2 \sqrt{D}} L$	$\frac{\left(1-2 \epsilon^{2}\right)\left(\xi^{2}-3 D\right)}{2 D D \xi}-\frac{1}{2 \sqrt{D}} L$
$-\sqrt{-}$	-" -	-" -
$-\sqrt{n_{2}}$	$-\frac{4\left(1-2 \epsilon^{2}\right) D}{D_{\xi}^{2}}$	
$-1-$	$-\frac{2\left(1-2 \epsilon^{2}\right) \xi^{2}}{D_{\xi}^{2}}-\frac{f_{1}(\epsilon, \xi)}{\sqrt{D} D_{\xi}^{2}} L$	$\frac{2\left(1-2 \epsilon^{2}\right)\left(D-\xi^{2}\right)}{D_{\xi}^{2}}+\frac{f_{1}(\epsilon, \xi)}{\sqrt{D D_{\xi}^{2}}} L$
$-1-$	- " -	-" -
$-\sqrt{-}$	-" -	- " -
$-$	- " -	-" -
$-\sqrt{0}-$		$-\frac{4\left(1-2 \epsilon^{2}\right) D}{D_{\xi}^{2}}$
$-\sqrt{\infty}$		- -
-6	$\frac{2\left(1-2 \epsilon^{2}\right) p_{2}(\epsilon, \xi)+\left(1-\xi^{2}\right)^{2}}{D^{2} D_{\xi}^{2}}+\frac{4 f_{2}(\epsilon, \xi)}{\sqrt{\bar{D}} D_{\xi}^{2}} L$	$\frac{16 \epsilon^{2}\left(2-3 \epsilon^{2}\right)-\left(3-\xi^{2}\right)^{2}}{D_{\xi}^{2}}-\frac{4 f_{2}(\epsilon, \xi)}{\sqrt{D} D_{\xi}^{2}} L$

no collinear divergence!

$$
\xi=\frac{m_{\phi}}{m_{\chi}} \gtrsim 1
$$

$$
\tau=\frac{T}{m_{\chi}} \ll 1
$$

$$
\epsilon=\frac{m_{f}}{2 m_{\chi}} \ll \tau
$$

The power of Thermal OPE

M. Beneke, F. Dighera, AH, I607.039IO

The cross section can be written as the Im part of the forward scattering amplitude:

$$
\sigma v_{\text {rel }}=\frac{2}{s} \operatorname{Im}\left\{(-i) \int_{\left.d^{4} x \frac{1}{4} \sum_{\text {spin }}\langle\bar{\chi} \chi ; T| \mathcal{T}\left\{\mathcal{O}_{\text {ann }}(0) \mathcal{O}_{\text {ann }}^{\dagger}(x)\right\}|\bar{\chi} \chi ; T\rangle\right\}}^{\}}\right.
$$

clear separation of soft (thermal effects) and hard (annihilation/decay) modes

$$
T \ll m
$$

Possible operators up to $\operatorname{dim} 4$:

\Rightarrow Operator Product Expansion

$$
-i \int d^{4} x e^{-i p \cdot x} \mathcal{T}\left\{J_{A}^{\mu}(0) J_{B}^{\dagger \dagger}(x)\right\}=\sum_{i} C_{A B}^{i}(p) \cdot \mathcal{O}_{i}
$$

Matrix elements: LO $\mathcal{O}\left(\alpha T^{4}\right) \quad \mathcal{O}\left(\alpha m_{f}^{2} T^{2}\right) \quad \mathcal{O}\left(\alpha T^{4}\right)$

Advantages of OPE

- The scaling with T is manifest
- Separation of T=0 and T-dependent contributions
- Significant simplification of the computations
- Clear physics interpretation: at $\mathcal{O}\left(\alpha \tau^{2}\right)$ effects of thermal kinetic energy

Example: muon decay in thermal bath*
Czarnecki et al. ' 1 I

$$
-i \int d^{4} x e^{-i p \cdot x} \mathcal{T}\left\{J^{\mu}(0) J^{\nu \dagger}(x)\right\}=C_{0}^{\mu \nu} \bar{\psi} \psi+C_{2}^{\mu \nu} \bar{\psi} \frac{i}{2} \sigma_{\alpha \beta} F^{\alpha \beta} \psi+\mathcal{O}\left(m_{\psi}^{-3}\right),
$$

*Analogy: semileptonic H_{b} decay in QCD

In the Literature:
OPE in finite temperature - Hatsuda, Koike, Lee '93; Mallik '97; ...
Related EFT approach - Biondini, Brambilla, Escobedo, Vairo 'I 3; ...

Advantages of OPE

- The scaling with T is manifest
- Separation of T=0 and T-dependent contributions
- Significant simplification of the computations
- Clear physics interpretation: at $\mathcal{O}\left(\alpha \tau^{2}\right)$ effects of thermal kinetic energy

Example: muon decay in thermal bath*
Czarnecki et al. 'II

$$
\begin{gathered}
-i \int d^{4} x e^{-i p \cdot x} \mathcal{T}\left\{J^{\mu}(0) J^{\nu \dagger}(x)\right\}=C_{0}^{\mu \nu} \bar{\psi} \psi+C_{2}^{\mu \nu} \bar{\psi} \frac{i}{2} \sigma \alpha \beta F^{\alpha \beta} \psi+\mathcal{O}\left(m_{\psi}^{-3}\right), \\
\bar{\psi} \psi=\bar{\psi} \psi \psi+\frac{1}{2 m_{\psi}^{2}} \bar{\psi}\left(i D_{\perp}\right)^{2} \psi+\frac{i}{4 m_{2}^{2}} \bar{\psi} \sigma_{\ldots \beta} F^{\alpha \beta} \psi+\mathcal{O}\left(m_{\psi}^{-3}\right), \\
\uparrow
\end{gathered}
$$

*Analogy: semileptonic H_{b} decay in QCD

In the Literature:
OPE in finite temperature - Hatsuda, Koike, Lee '93; Mallik '97; ...
Related EFT approach - Biondini, Brambilla, Escobedo, Vairo 'I3; ...

CONCLUSIONS

I. how the (soft and collinear) IR divergence cancellation happen?
automatic in thermal QFT formalism, cancellation at the level of every CTP self-energy
2. does Boltzmann equation itself receive quantum corrections? no, not at NLO
3. how large are the remaining finite T corrections? strongly suppressed, of order $\mathcal{O}\left(\alpha T^{4}\right)$
4. the thermal OPE method provides a useful tool and also physics interpretation of the thermal correction

To take home:
complete framework for computations of relic density at NLO w/ thermal effects

BACKUP SLIDES

Closed Time Path PATH TO BOLTZMANN EQUATION

Kadanoff-Baym

$\Rightarrow \quad$ Boltzmann

$$
\begin{gathered}
E\left(\partial_{t}-H \vec{p} \cdot \nabla_{\vec{p}}\right) f=\mathcal{C}[f] . \\
\text { collision term derived from thermal QFT }
\end{gathered}
$$

Assumptions:

Justification: inhomogeneity
plasma excitation momenta
freeze-out happens close to equilibrium

Results

coming back to our example...
every contribution can be written in a form:

note:

$$
J_{n} \equiv \int_{0}^{\infty} f_{B}(\omega) \omega^{n} d \omega=\left\{\begin{array}{cc}
\widehat{\tau^{\text {div }}} & n \leq 0 \\
\sim \tau^{n+1} & n>0
\end{array}\right.
$$

IR divergence in separate terms: $\begin{aligned} J_{-1} & \leftrightarrow T=0 \text { soft div } \\ J_{0} & \leftrightarrow T\end{aligned}=0$ soft eikonal finite T corrections: $\quad J_{1} \leftrightarrow \mathcal{O}\left(\tau^{2}\right) \ldots$

Collision Term

EXAMPLE

Bino-like DM: $\chi_{\text {Majorana fermion, SM }}$ singlet
annihilation process at tree level:

scale hierarchy:

$$
\begin{array}{|c}
m_{\phi} \gtrsim m_{\chi} \\
\text { no thermal } \\
\text { contributions }
\end{array} \quad \ggg m_{\substack{\text { effectively } \\
\text { massless }}}^{m_{f}}
$$

vertices (2 types):

$\xi=\frac{m_{\phi}}{m_{\chi}} \gtrsim 1$

Collision Term
 COMPUTATION

Collision Term MATCHING

after inserting the propagators:

$$
\begin{aligned}
& \Sigma_{A_{\text {III }}}^{>}(q) S^{<}(q)=\frac{1}{2 E_{\chi_{1}}}(2 \pi) \delta\left(q^{0}-E_{\chi_{1}}\right) \int \frac{d^{4} t}{(2 \pi)^{3} 2 E_{\chi_{2}}} \delta\left(t^{0}-E_{\chi_{2}}\right) \times \\
& \quad \int \frac{d^{3} \vec{k}_{1}}{(2 \pi)^{3} 2 E_{f_{1}}} \frac{d^{3} \vec{k}_{2}}{(2 \pi)^{3} 2 E_{f_{2}}}(2 \pi)^{4} \delta\left(q+t-k_{1}-k_{2}\right)\left|\mathcal{M}_{A}\right|^{2}\left[f_{\chi}(q) f_{\chi}(t)\left(1-f_{f}^{\mathrm{eq}}\left(k_{1}^{0}\right)\right)\left(1-f_{f}^{\mathrm{eq}}\left(k_{2}^{0}\right)\right)\right]
\end{aligned}
$$

\Rightarrow one indeed recovers the known collision term and
repeating the same for B type diagrams the bottom line:

$$
i \Sigma^{>} \leftrightarrow \quad \text { tree level annihilation }
$$

Collision Term MATCHING AT NLO

$i \Sigma_{3}=20$ self-energy diagrams

example:

$\Sigma_{\mathrm{CA}}^{>}(q) S^{<}(q)=\frac{1}{2 E_{\chi_{1}}}(2 \pi) \delta\left(q^{0}-E_{\chi_{1}}\right) \int \frac{d^{4} t}{(2 \pi)^{3} 2 E_{\chi_{2}}} \delta\left(t^{0}-E_{\chi_{2}}\right)$

$$
\int \frac{d^{3} \vec{k}_{1}}{(2 \pi)^{3} 2 E_{f_{1}}} \frac{d^{3} \vec{k}_{2}}{(2 \pi)^{3} 2 E_{f_{2}}} \frac{d^{3} \vec{s}}{(2 \pi)^{3} 2 E_{\gamma}}(2 \pi)^{4} \delta\left(q+t-k_{1}-k_{2}-s\right)
$$

$$
\mathcal{M}_{C}\left(\mathcal{M}_{A}\right)^{*}\left[f_{\chi}(q) f_{\chi}(t)\left(1-f_{f}^{\text {eq }}\left(k_{1}^{0}\right)\right)\left(1-f_{f}^{\text {eq }}\left(k_{2}^{0}\right)\right)\left(1+f_{\gamma}^{\text {eq }}\left(s^{0}\right)\right)\right]
$$

\Rightarrow at NLO thermal effects do not change the collision therm structure

