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1 Introduction

Observations at astrophysical and cosmological scales indicate existence of yet unknown, non-baryonic particle
dark matter (DM) component with the present day energy density [1]:

⌦DMh2 = 0.1187 ± 0.0017. (1)

Observations based on purely gravitational e↵ects cannot however provide an answer to the question of its origin,
therefore after several decades it still remains open. One of the most natural and widely studied possibility is that
dark matter arises as a thermal relic, i.e., it is produced thermally in the Early Universe and freezes-out when
the temperature of the plasma is not high enough to keep the dark matter component in chemical equilibrium.
The moment when it happens is determined by physical processes involving three di↵erent energy scales: the
Hubble expansion rate H, the interaction (annihilation) rate � and the scale of inhomogeneity of the system. The
latter is usually neglected as one assumes that before the freeze-out the whole system is in thermal equilibrium
(having infinite inhomogeneity length) and the process of chemical decoupling of dark matter component does not
introduce large departure of equilibrium of the background plasma. Additionally, if one assumes that the Compton
wavelength of DM particles is small with respect to inhomogeneity scale (the quasi-particle approximation) and
that one can neglect all memory e↵ects, one arrives in semi-classical description of the evolution of phase space
density functions f(p). In this case, the transport is governed by the Boltzmann equation. For the relic density
computation it is typically written in the Friedmann-Robertson-Walker background and as an equation for the
number density of given species i:

ni(t) =
hi

(2⇡)3

Z
d3pfi(p), (2)

with the hi being the number of internal degrees of freedom, as follows

dn�

dt
+ 3Hn� = �

Z
d⇧�d⇧ad⇧b...d⇧id⇧j ...|M�ab...!ij...|2(2⇡)4�(4)(p� + pa + pb + ... � pi � pj � ...) ⇥

[f�fafb...(1 ± fi)(1 ± fj)... � fifj ...(1 ± f�)(1 ± fa)(1 ± fb)...] , (3)

for a process �ab... ! ij... and where we assumed CP invariance resulting in |M�ab...!ij...|2 = |Mij...!�ab...|2.
In recent years there has been an increasing interest in higher order corrections to scattering and annihilation

processes involving DM particles. The main phenomenological importance of such corrections is in the possibly
large modification of the annihilation spectra [?] and in the scattering rates in the direct detection experiments [?].
It has been also noted recently that in some cases the corrections to the annihilation rate � at early times
can be significant and can lead to a non-negligible e↵ect in the relic density computation [2–6]. Few projects
aiming in providing numerical codes including the higher order corrections have been started and are under
developement [?, ?]. Moreover, the increasing precision of the observational data will require even more precise
computations on the theoretical side, in some cases at full next to leading order (NLO) in the coupling constant.

However, using in the standard relic density computation the scattering matrix elements at NLO gives rise
to two questions: i) whether the transport equation itself receives quantum corrections and ii) how does the
cancellation of possible (soft and/or collinear) IR divergences take place? The first point was studied in detail
in [7] in the context of electroweak baryogenesis (see also [?]), and we will discuss it in section 3. Now we will
illustrate the second issue.
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time evolution of         in kinetic theory: 

freeze-out 
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�ann ⇠ H

DM in equilibrium

chemical decoupling time

assumptions for using Boltzmann eq: classical limit, molecular chaos,...
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BOLTZMANN EQ.

Re-written for the comoving number density:

Recipe: 
compute LO annihilation cross-section, 
take a thermal bath average, 
plug in to BE… and voilà

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � neq

� neq
�̄

�

dY

dx

=

r
g⇤⇡m2

�

45G

h���̄!ij�relieq

x

2

�
Y

2 � Y

2
eq

�

Y =
n�

s

lim
x!0

Y = Yeq lim

x!1
Y = const
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Recall at LO:

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)]

crucial point: 

in Maxwell approx.

p� + p�̄ = pi + pj ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j

at NLO both virtual one-loop and 3-body processes contribute:

Creal = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ij�vrel [f�f�̄(1± fi)(1± fj)(1 + f�)�fifjf�(1± f�)(1± f�̄)]

C
1�loop

= �h2

�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

�1�loop

��̄!ij vrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)]
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Recall at LO:

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)]

crucial point: 

in Maxwell approx.

p� + p�̄ = pi + pj ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j

p� + p�̄ = pi + pj ± p� )

at NLO both virtual one-loop and 3-body processes contribute:

photon can be 
arbitrarily soft
f� ⇠ !�1

Creal = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ij�vrel [f�f�̄(1± fi)(1± fj)(1 + f�)�fifjf�(1± f�)(1± f�̄)]

C
1�loop

= �h2

�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

�1�loop

��̄!ij vrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)]

Maxwell approx. not valid anymore...
…even bigger problem:  T-dependent IR divergence!
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E (@t �H~p ·r~p) f = C[f ]. (0.1)

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)] , (0.2)

���̄!ijvrel =
1

4E�E�̄

Z
d3~pi

(2⇡)32Ei

d3~pj
(2⇡)32Ej

|M��̄!ij |2(2⇡)4�(p�+p�̄�pi�pj). (0.3)

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�
, (0.4)

h���̄!ijvrelieq = � h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄ . (0.5)

E� + E�̄ = Ei + Ej ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j (0.6)

CNLO ⇠
Z
d⇧��̄ij f�f�̄

⇢
|MLO

��̄!ij |2 + |MNLO T=0
��̄!ij |2 +

Z
d⇧� |M��̄!ij� |2 +

|MNLO T 6=0
��̄!ij |2 +

Z
d⇧�

⇥
f�

�|M��̄!ij� |2 + |M��̄�!ij |2
�

�fi
�|M��̄!ij� |2 + |M��̄i!j� |2

�� fj
�|M��̄!ij� |2 + |M��̄j!i� |2

�⇤�

�fifj

⇢
|MLO

ij!��̄|2 + |MNLO T=0
ij!��̄ |2 +

Z
d⇧� |Mij!��̄� |2 +

|MNLO T 6=0
ij!��̄ |2 +

Z
d⇧�

⇥
f�

�|Mij!��̄� |2 + |Mij�!��̄|2
�

�f�
�|Mij!��̄� |2 + |Mij�!�� |2

�� f�̄
�|Mij!��̄� |2 + |Mij�̄!�̄� |2

�⇤�

CNLO = � ⇥h�NLO
ann vrelieq n�n�̄ � h�NLO

prod vrelieq neq
� neq

�̄

⇤
, (0.7)

i�(x, y) = hTC�(x)�
†
(y)i, (0.8)

and for the fermion

iS↵�(x, y) = hTC ↵(x) ¯ �(y)i, (0.9)

where here TC denotes the time ordering operation along the contour. They correspond to four

Green’s functions with real time arguments each:

i�>
(x, y) ⌘ h�(x)�†(y)i i�<

(x, y) ⌘ h�†(y)�(x)i (0.10)

i�c
(x, y) ⌘ hT c�(x)�†(y)i i�a

(x, y) ⌘ hT a�(x)�†(y)i, (0.11)

for scalars and

iS>
↵�(x, y) ⌘ h ↵(x) ¯ �(y)i iS<

↵�(x, y) ⌘ �h ¯ ↵(y) �(x)i (0.12)

iSc
↵�(x, y) ⌘ hT c ↵(x) ¯ �(y)i iSa

↵�(x, y) ⌘ hT a ↵(x) ¯ �(y)i, (0.13)

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (0.14)

1



RELIC DENSITY  
WHAT REALLY HAPPENS AT NLO?

6

E (@t �H~p ·r~p) f = C[f ]. (0.1)

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)] , (0.2)

���̄!ijvrel =
1

4E�E�̄

Z
d3~pi

(2⇡)32Ei

d3~pj
(2⇡)32Ej

|M��̄!ij |2(2⇡)4�(p�+p�̄�pi�pj). (0.3)

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�
, (0.4)

h���̄!ijvrelieq = � h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄ . (0.5)

E� + E�̄ = Ei + Ej ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j (0.6)

CNLO ⇠
Z
d⇧��̄ij f�f�̄

⇢
|MLO

��̄!ij |2 + |MNLO T=0
��̄!ij |2 +

Z
d⇧� |M��̄!ij� |2 +

|MNLO T 6=0
��̄!ij |2 +

Z
d⇧�

⇥
f�

�|M��̄!ij� |2 + |M��̄�!ij |2
�

�fi
�|M��̄!ij� |2 + |M��̄i!j� |2

�� fj
�|M��̄!ij� |2 + |M��̄j!i� |2

�⇤�

�fifj

⇢
|MLO

ij!��̄|2 + |MNLO T=0
ij!��̄ |2 +

Z
d⇧� |Mij!��̄� |2 +

|MNLO T 6=0
ij!��̄ |2 +

Z
d⇧�

⇥
f�

�|Mij!��̄� |2 + |Mij�!��̄|2
�

�f�
�|Mij!��̄� |2 + |Mij�!�� |2

�� f�̄
�|Mij!��̄� |2 + |Mij�̄!�̄� |2

�⇤�

CNLO = � ⇥h�NLO
ann vrelieq n�n�̄ � h�NLO

prod vrelieq neq
� neq

�̄

⇤
, (0.7)

i�(x, y) = hTC�(x)�
†
(y)i, (0.8)

and for the fermion

iS↵�(x, y) = hTC ↵(x) ¯ �(y)i, (0.9)

where here TC denotes the time ordering operation along the contour. They correspond to four

Green’s functions with real time arguments each:

i�>
(x, y) ⌘ h�(x)�†(y)i i�<

(x, y) ⌘ h�†(y)�(x)i (0.10)

i�c
(x, y) ⌘ hT c�(x)�†(y)i i�a

(x, y) ⌘ hT a�(x)�†(y)i, (0.11)

for scalars and

iS>
↵�(x, y) ⌘ h ↵(x) ¯ �(y)i iS<

↵�(x, y) ⌘ �h ¯ ↵(y) �(x)i (0.12)

iSc
↵�(x, y) ⌘ hT c ↵(x) ¯ �(y)i iSa

↵�(x, y) ⌘ hT a ↵(x) ¯ �(y)i, (0.13)

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (0.14)

1



RELIC DENSITY  
WHAT REALLY HAPPENS AT NLO?

6

only this used in NLO literature so far

E (@t �H~p ·r~p) f = C[f ]. (0.1)

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)] , (0.2)

���̄!ijvrel =
1

4E�E�̄

Z
d3~pi

(2⇡)32Ei

d3~pj
(2⇡)32Ej

|M��̄!ij |2(2⇡)4�(p�+p�̄�pi�pj). (0.3)

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�
, (0.4)

h���̄!ijvrelieq = � h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄ . (0.5)

E� + E�̄ = Ei + Ej ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j (0.6)

CNLO ⇠
Z
d⇧��̄ij f�f�̄

⇢
|MLO

��̄!ij |2 + |MNLO T=0
��̄!ij |2 +

Z
d⇧� |M��̄!ij� |2 +

|MNLO T 6=0
��̄!ij |2 +

Z
d⇧�

⇥
f�

�|M��̄!ij� |2 + |M��̄�!ij |2
�

�fi
�|M��̄!ij� |2 + |M��̄i!j� |2

�� fj
�|M��̄!ij� |2 + |M��̄j!i� |2

�⇤�

�fifj

⇢
|MLO

ij!��̄|2 + |MNLO T=0
ij!��̄ |2 +

Z
d⇧� |Mij!��̄� |2 +

|MNLO T 6=0
ij!��̄ |2 +

Z
d⇧�

⇥
f�

�|Mij!��̄� |2 + |Mij�!��̄|2
�

�f�
�|Mij!��̄� |2 + |Mij�!�� |2

�� f�̄
�|Mij!��̄� |2 + |Mij�̄!�̄� |2

�⇤�

CNLO = � ⇥h�NLO
ann vrelieq n�n�̄ � h�NLO

prod vrelieq neq
� neq

�̄

⇤
, (0.7)

i�(x, y) = hTC�(x)�
†
(y)i, (0.8)

and for the fermion

iS↵�(x, y) = hTC ↵(x) ¯ �(y)i, (0.9)

where here TC denotes the time ordering operation along the contour. They correspond to four

Green’s functions with real time arguments each:

i�>
(x, y) ⌘ h�(x)�†(y)i i�<

(x, y) ⌘ h�†(y)�(x)i (0.10)

i�c
(x, y) ⌘ hT c�(x)�†(y)i i�a

(x, y) ⌘ hT a�(x)�†(y)i, (0.11)

for scalars and

iS>
↵�(x, y) ⌘ h ↵(x) ¯ �(y)i iS<

↵�(x, y) ⌘ �h ¯ ↵(y) �(x)i (0.12)

iSc
↵�(x, y) ⌘ hT c ↵(x) ¯ �(y)i iSa

↵�(x, y) ⌘ hT a ↵(x) ¯ �(y)i, (0.13)

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (0.14)

1



RELIC DENSITY  
WHAT REALLY HAPPENS AT NLO?

6

only this used in NLO literature so far

E (@t �H~p ·r~p) f = C[f ]. (0.1)

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)] , (0.2)

���̄!ijvrel =
1

4E�E�̄

Z
d3~pi

(2⇡)32Ei

d3~pj
(2⇡)32Ej

|M��̄!ij |2(2⇡)4�(p�+p�̄�pi�pj). (0.3)

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�
, (0.4)

h���̄!ijvrelieq = � h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄ . (0.5)

E� + E�̄ = Ei + Ej ) f eq
� f eq

�̄ ⇡ f eq
i f eq

j (0.6)

CNLO ⇠
Z
d⇧��̄ij f�f�̄

⇢
|MLO

��̄!ij |2 + |MNLO T=0
��̄!ij |2 +

Z
d⇧� |M��̄!ij� |2 +

|MNLO T 6=0
��̄!ij |2 +

Z
d⇧�

⇥
f�

�|M��̄!ij� |2 + |M��̄�!ij |2
�

�fi
�|M��̄!ij� |2 + |M��̄i!j� |2

�� fj
�|M��̄!ij� |2 + |M��̄j!i� |2

�⇤�

�fifj

⇢
|MLO

ij!��̄|2 + |MNLO T=0
ij!��̄ |2 +

Z
d⇧� |Mij!��̄� |2 +

|MNLO T 6=0
ij!��̄ |2 +

Z
d⇧�

⇥
f�

�|Mij!��̄� |2 + |Mij�!��̄|2
�

�f�
�|Mij!��̄� |2 + |Mij�!�� |2

�� f�̄
�|Mij!��̄� |2 + |Mij�̄!�̄� |2

�⇤�

CNLO = � ⇥h�NLO
ann vrelieq n�n�̄ � h�NLO

prod vrelieq neq
� neq

�̄

⇤
, (0.7)

i�(x, y) = hTC�(x)�
†
(y)i, (0.8)

and for the fermion

iS↵�(x, y) = hTC ↵(x) ¯ �(y)i, (0.9)

where here TC denotes the time ordering operation along the contour. They correspond to four

Green’s functions with real time arguments each:

i�>
(x, y) ⌘ h�(x)�†(y)i i�<

(x, y) ⌘ h�†(y)�(x)i (0.10)

i�c
(x, y) ⌘ hT c�(x)�†(y)i i�a

(x, y) ⌘ hT a�(x)�†(y)i, (0.11)

for scalars and

iS>
↵�(x, y) ⌘ h ↵(x) ¯ �(y)i iS<

↵�(x, y) ⌘ �h ¯ ↵(y) �(x)i (0.12)

iSc
↵�(x, y) ⌘ hT c ↵(x) ¯ �(y)i iSa

↵�(x, y) ⌘ hT a ↵(x) ¯ �(y)i, (0.13)

G(X, p) ⌘
Z t

max

t
min
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photon 
emission

photon 
absorption

SM fermions 
emission

SM fermions 
absorption



1. how the (soft and collinear) IR divergence cancellation 
happen?

2. does Boltzmann equation itself receive quantum corrections?

3. how large are the remaining finite T corrections?

QUESTIONS:

Program: develop a method for relic density calculation 
directly from QFT and free from IR problems

framework exists: non-equilibrium thermal field theory 
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CLOSED TIME PATH
FORMALISM

contour Green’s functions obey Dyson-Schwinger eqs:

C tmax

tmin

t

Figure 1. The contour C in the complex time plane. The value t
max

can be taken to be +1 for practical
computations.

dependence di↵erent than on the relative coordinate. Therefore, for systems not far from equilib-
rium it is useful to perform the Wigner transform and define the Green’s functions (and analogically
self-energies) in the Wigner space

G(X, p) ⌘
Z

t

max

t

min

d4ueipuG (X � u/2, X + u/2) . (3.7)

The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the
other hand describes large scale fluctuations, i.e. inhomogeneities. In the equilibrium in the Wigner
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and the Green’s functions. These equations for the Green’s functions are exact functional equations,
which are however very non-trivial to solve. At this point we will use the approximations described
in the introduction. Firstly we go to the Wigner space. This is not an approximation in itself, but we
will additionally assume that one can take the tmin = �1, which results in discarding any memory
e↵ect. Next we perform the gradient expansion up to the first order in gradients. The equations

– 5 –

e.g. [16? ]). The proof of cancellation of all divergences in general case is not completed, however
partial results exist in the literature [17? , 18]. The known results show the physical reason for the
thermal divergence cancellation: the photons in the plasma contribute not only to the soft/collinear
emission but also to the virtual processes of the two-body amplitude.

The same physical reason holds in the case of the chemical decoupling. In the next section we
present a framework of computing the relic density, based on deriving the Boltzmann equation from the
Kadano↵-Baym equations [19]. This derivation is a well known procedure in non-equilibrium thermal
field theory and gives a prescription for the computation of the collision term which consistently takes
into account all the thermal corrections leading to IR divergence cancellation and also automatically
gives the finite temperature-dependent correction.

In the example model we will consider, we can directly observe the cancellation of both soft
and collinear divergences. As we will show, the IR finiteness of the collision term boils down to the
finiteness of the DM self-energies in the thermal background. We find that the standard procedure
of computing the scattering amplitudes at zero temperature and plugging it into the semi-classical
Boltzmann equation give IR finite result, which is correct with a very good accuracy; in the low
temperature regime, i.e. ⌧ ⌘ T

m�
⌧ 1 which is the case of the freeze-out process, neglecting the

thermal e↵ect gives an error which is of order O(↵⌧2), with ↵ being the fine structure constant.

3 Derivation of the quantum Boltzmann equation

The aim of this section is to shortly review the procedure of obtaining the transport equation for
the phase space density functions, and then after performing Wigner transformation and gradient
expansion recovering the Boltzmann equation []. We will work in the Closed Time Path (CTP)
formulation of thermal QFT (for a review see e.g. [20]), where all the Green’s functions are defined
on a complex time plane along the contour C, see fig.1. In particular the contour Green’s function
for the complex scalar is

i�(x, y) = hT
C

�(x)�†(y)i, (3.1)

and for the fermion
iS

↵�

(x, y) = hT
C

 
↵

(x) ̄
�

(y)i, (3.2)

where here T
C

denotes the time ordering operation along the contour. They correspond to four
Green’s functions with real time arguments each:

i�>(x, y) ⌘ h�(x)�†(y)i i�<(x, y) ⌘ h�†(y)�(x)i (3.3)

i�c(x, y) ⌘ hT c�(x)�†(y)i i�a(x, y) ⌘ hT a�(x)�†(y)i, (3.4)

for scalars and

iS>

↵�

(x, y) ⌘ h 
↵

(x) ̄
�

(y)i iS<

↵�

(x, y) ⌘ �h ̄
↵

(y) 
�

(x)i (3.5)

iSc

↵�

(x, y) ⌘ hT c 
↵

(x) ̄
�

(y)i iSa

↵�

(x, y) ⌘ hT a 
↵

(x) ̄
�

(y)i, (3.6)

for fermions, where T c(T a) denotes chronological (anti-chronological) time ordering along the real
time.3 The h. . .i denotes the averaging over an ensemble at time tmin.

This formalism therefore describes a general non-equilibrium system, where all the physical
macroscopic observables are averages over an ensemble. The CTP formulation originates from the
periodicity of the boundary conditions of the partition function in path integral formalism. The
introduction of additional Green’s functions leads to the need of doubling of the degrees of freedom
of the theory by including ghosts, which are defined on the lower branch of the contour. These states
do not appear as external one, but result in modification of the Feynman rules (see Appendix A).

In a general non-equilibrium system all these functions depend on both space-time coordinates.
This can be rephrased that they depend on both the relative coordinate r = x � y and the aver-
aged (macroscopic) one X = x+y

2 . In equilibrium, however, the system cannot have any space-time

3Often the upper branch is called ‘1’ and lower ‘2’ and the propagators are denoted as �> = �
21

, �< = �
12

,
�c = �

11

and �a = �
22

and similarly for the fermions.
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Figure 2: The contour C in the complex time plane. The value t
max

can be taken to be +1 for practical
computations.

(essentially the Fourier transform in r) and define the Green’s functions (and analogically self-energies) in the
Winger space

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (17)

The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the other hand
describes large scale fluctuations, i.e. inhomogeneities. In the equilibrium in the Wigner space all Green’s functions
are described only by the dependence on the momentum Geq(p).
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where the superscript ‘0’ denotes the free Green’s functions, and ⇧, ⌃ are the self energies. After short derivation
these can be rewritten in the form of Kadano↵-Baym equations [13]:

(�@2 � m2

�)�
<>(x, y) �

Z
d4z

⇣
⇧h(x, z)�

<>(z, y) � ⇧
<>(x, z)�h(z, y)

⌘
= C�, (20)

for the scalars and

(i/@ � m�)S
<>(x, y) �

Z
d4z

⇣
⌃h(x, z)S

<>(z, y) � ⌃
<>(x, z)Sh(z, y)

⌘
= C�, (21)

for fermions, where the collision terms are defined as:
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and where the subscript h denotes the hermitian part, ⇧h = ⇧c � 1
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This formalism therefore describes a general non-equilibrium system, where all the physical
macroscopic observables are averages over an ensemble. The CTP formulation originates from the
periodicity of the boundary conditions of the partition function in path integral formalism. The
introduction of additional Green’s functions leads to the need of doubling of the degrees of freedom
of the theory by including ghosts, which are defined on the lower branch of the contour. These states
do not appear as external one, but result in modification of the Feynman rules (see Appendix A).

In a general non-equilibrium system all these functions depend on both space-time coordinates.
This can be rephrased that they depend on both the relative coordinate r = x � y and the aver-
aged (macroscopic) one X = x+y
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and collinear divergences. As we will show, the IR finiteness of the collision term boils down to the
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Figure 2: The contour C in the complex time plane. The value t
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can be taken to be +1 for practical
computations.

(essentially the Fourier transform in r) and define the Green’s functions (and analogically self-energies) in the
Winger space

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (17)

The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the other hand
describes large scale fluctuations, i.e. inhomogeneities. In the equilibrium in the Wigner space all Green’s functions
are described only by the dependence on the momentum Geq(p).
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and where the subscript h denotes the hermitian part, ⇧h = ⇧c � 1
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(⇧> � ⇧<) and analogously for ⌃ and the
Green’s functions. These equations for the Green’s functions are exact functional equations, which are however
very non-trivial to solve. At this point we will use the approximations described in the introduction. Firstly we
go to the Wigner space. This is not an approximation in itself, but we will additionally assume that one can take
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e.g. [16? ]). The proof of cancellation of all divergences in general case is not completed, however
partial results exist in the literature [17? , 18]. The known results show the physical reason for the
thermal divergence cancellation: the photons in the plasma contribute not only to the soft/collinear
emission but also to the virtual processes of the two-body amplitude.

The same physical reason holds in the case of the chemical decoupling. In the next section we
present a framework of computing the relic density, based on deriving the Boltzmann equation from the
Kadano↵-Baym equations [19]. This derivation is a well known procedure in non-equilibrium thermal
field theory and gives a prescription for the computation of the collision term which consistently takes
into account all the thermal corrections leading to IR divergence cancellation and also automatically
gives the finite temperature-dependent correction.

In the example model we will consider, we can directly observe the cancellation of both soft
and collinear divergences. As we will show, the IR finiteness of the collision term boils down to the
finiteness of the DM self-energies in the thermal background. We find that the standard procedure
of computing the scattering amplitudes at zero temperature and plugging it into the semi-classical
Boltzmann equation give IR finite result, which is correct with a very good accuracy; in the low
temperature regime, i.e. ⌧ ⌘ T

m�
⌧ 1 which is the case of the freeze-out process, neglecting the

thermal e↵ect gives an error which is of order O(↵⌧2), with ↵ being the fine structure constant.

3 Derivation of the quantum Boltzmann equation

The aim of this section is to shortly review the procedure of obtaining the transport equation for
the phase space density functions, and then after performing Wigner transformation and gradient
expansion recovering the Boltzmann equation []. We will work in the Closed Time Path (CTP)
formulation of thermal QFT (for a review see e.g. [20]), where all the Green’s functions are defined
on a complex time plane along the contour C, see fig.1. In particular the contour Green’s function
for the complex scalar is

i�(x, y) = hT
C

�(x)�†(y)i, (3.1)

and for the fermion
iS

↵�

(x, y) = hT
C

 
↵

(x) ̄
�

(y)i, (3.2)

where here T
C

denotes the time ordering operation along the contour. They correspond to four
Green’s functions with real time arguments each:

i�>(x, y) ⌘ h�(x)�†(y)i i�<(x, y) ⌘ h�†(y)�(x)i (3.3)

i�c(x, y) ⌘ hT c�(x)�†(y)i i�a(x, y) ⌘ hT a�(x)�†(y)i, (3.4)

for scalars and
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for fermions, where T c(T a) denotes chronological (anti-chronological) time ordering along the real
time.3 The h. . .i denotes the averaging over an ensemble at time tmin.

This formalism therefore describes a general non-equilibrium system, where all the physical
macroscopic observables are averages over an ensemble. The CTP formulation originates from the
periodicity of the boundary conditions of the partition function in path integral formalism. The
introduction of additional Green’s functions leads to the need of doubling of the degrees of freedom
of the theory by including ghosts, which are defined on the lower branch of the contour. These states
do not appear as external one, but result in modification of the Feynman rules (see Appendix A).

In a general non-equilibrium system all these functions depend on both space-time coordinates.
This can be rephrased that they depend on both the relative coordinate r = x � y and the aver-
aged (macroscopic) one X = x+y

2 . In equilibrium, however, the system cannot have any space-time

3Often the upper branch is called ‘1’ and lower ‘2’ and the propagators are denoted as �> = �
21

, �< = �
12

,
�c = �

11

and �a = �
22

and similarly for the fermions.

– 4 –

e.g. [16? ]). The proof of cancellation of all divergences in general case is not completed, however
partial results exist in the literature [17? , 18]. The known results show the physical reason for the
thermal divergence cancellation: the photons in the plasma contribute not only to the soft/collinear
emission but also to the virtual processes of the two-body amplitude.

The same physical reason holds in the case of the chemical decoupling. In the next section we
present a framework of computing the relic density, based on deriving the Boltzmann equation from the
Kadano↵-Baym equations [19]. This derivation is a well known procedure in non-equilibrium thermal
field theory and gives a prescription for the computation of the collision term which consistently takes
into account all the thermal corrections leading to IR divergence cancellation and also automatically
gives the finite temperature-dependent correction.

In the example model we will consider, we can directly observe the cancellation of both soft
and collinear divergences. As we will show, the IR finiteness of the collision term boils down to the
finiteness of the DM self-energies in the thermal background. We find that the standard procedure
of computing the scattering amplitudes at zero temperature and plugging it into the semi-classical
Boltzmann equation give IR finite result, which is correct with a very good accuracy; in the low
temperature regime, i.e. ⌧ ⌘ T

m�
⌧ 1 which is the case of the freeze-out process, neglecting the

thermal e↵ect gives an error which is of order O(↵⌧2), with ↵ being the fine structure constant.

3 Derivation of the quantum Boltzmann equation

The aim of this section is to shortly review the procedure of obtaining the transport equation for
the phase space density functions, and then after performing Wigner transformation and gradient
expansion recovering the Boltzmann equation []. We will work in the Closed Time Path (CTP)
formulation of thermal QFT (for a review see e.g. [20]), where all the Green’s functions are defined
on a complex time plane along the contour C, see fig.1. In particular the contour Green’s function
for the complex scalar is

i�(x, y) = hT
C

�(x)�†(y)i, (3.1)

and for the fermion
iS

↵�

(x, y) = hT
C

 
↵

(x) ̄
�

(y)i, (3.2)

where here T
C

denotes the time ordering operation along the contour. They correspond to four
Green’s functions with real time arguments each:

i�>(x, y) ⌘ h�(x)�†(y)i i�<(x, y) ⌘ h�†(y)�(x)i (3.3)

i�c(x, y) ⌘ hT c�(x)�†(y)i i�a(x, y) ⌘ hT a�(x)�†(y)i, (3.4)

for scalars and

iS>

↵�

(x, y) ⌘ h 
↵

(x) ̄
�

(y)i iS<

↵�

(x, y) ⌘ �h ̄
↵

(y) 
�

(x)i (3.5)

iSc

↵�

(x, y) ⌘ hT c 
↵

(x) ̄
�

(y)i iSa

↵�

(x, y) ⌘ hT a 
↵

(x) ̄
�

(y)i, (3.6)

for fermions, where T c(T a) denotes chronological (anti-chronological) time ordering along the real
time.3 The h. . .i denotes the averaging over an ensemble at time tmin.

This formalism therefore describes a general non-equilibrium system, where all the physical
macroscopic observables are averages over an ensemble. The CTP formulation originates from the
periodicity of the boundary conditions of the partition function in path integral formalism. The
introduction of additional Green’s functions leads to the need of doubling of the degrees of freedom
of the theory by including ghosts, which are defined on the lower branch of the contour. These states
do not appear as external one, but result in modification of the Feynman rules (see Appendix A).

In a general non-equilibrium system all these functions depend on both space-time coordinates.
This can be rephrased that they depend on both the relative coordinate r = x � y and the aver-
aged (macroscopic) one X = x+y

2 . In equilibrium, however, the system cannot have any space-time

3Often the upper branch is called ‘1’ and lower ‘2’ and the propagators are denoted as �> = �
21

, �< = �
12

,
�c = �

11

and �a = �
22

and similarly for the fermions.

– 4 –

C tmax

tmin

t

Figure 2: The contour C in the complex time plane. The value t
max

can be taken to be +1 for practical
computations.

(essentially the Fourier transform in r) and define the Green’s functions (and analogically self-energies) in the
Winger space
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The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the other hand
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are described only by the dependence on the momentum Geq(p).
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(⇧> � ⇧<) and analogously for ⌃ and the
Green’s functions. These equations for the Green’s functions are exact functional equations, which are however
very non-trivial to solve. At this point we will use the approximations described in the introduction. Firstly we
go to the Wigner space. This is not an approximation in itself, but we will additionally assume that one can take
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e↵ect. Next we perform the gradient expansion up to the first order in gradients. The equations
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e.g. [16? ]). The proof of cancellation of all divergences in general case is not completed, however
partial results exist in the literature [17? , 18]. The known results show the physical reason for the
thermal divergence cancellation: the photons in the plasma contribute not only to the soft/collinear
emission but also to the virtual processes of the two-body amplitude.

The same physical reason holds in the case of the chemical decoupling. In the next section we
present a framework of computing the relic density, based on deriving the Boltzmann equation from the
Kadano↵-Baym equations [19]. This derivation is a well known procedure in non-equilibrium thermal
field theory and gives a prescription for the computation of the collision term which consistently takes
into account all the thermal corrections leading to IR divergence cancellation and also automatically
gives the finite temperature-dependent correction.

In the example model we will consider, we can directly observe the cancellation of both soft
and collinear divergences. As we will show, the IR finiteness of the collision term boils down to the
finiteness of the DM self-energies in the thermal background. We find that the standard procedure
of computing the scattering amplitudes at zero temperature and plugging it into the semi-classical
Boltzmann equation give IR finite result, which is correct with a very good accuracy; in the low
temperature regime, i.e. ⌧ ⌘ T

m�
⌧ 1 which is the case of the freeze-out process, neglecting the

thermal e↵ect gives an error which is of order O(↵⌧2), with ↵ being the fine structure constant.

3 Derivation of the quantum Boltzmann equation

The aim of this section is to shortly review the procedure of obtaining the transport equation for
the phase space density functions, and then after performing Wigner transformation and gradient
expansion recovering the Boltzmann equation []. We will work in the Closed Time Path (CTP)
formulation of thermal QFT (for a review see e.g. [20]), where all the Green’s functions are defined
on a complex time plane along the contour C, see fig.1. In particular the contour Green’s function
for the complex scalar is

i�(x, y) = hT
C

�(x)�†(y)i, (3.1)

and for the fermion
iS

↵�

(x, y) = hT
C

 
↵

(x) ̄
�

(y)i, (3.2)

where here T
C

denotes the time ordering operation along the contour. They correspond to four
Green’s functions with real time arguments each:

i�>(x, y) ⌘ h�(x)�†(y)i i�<(x, y) ⌘ h�†(y)�(x)i (3.3)

i�c(x, y) ⌘ hT c�(x)�†(y)i i�a(x, y) ⌘ hT a�(x)�†(y)i, (3.4)

for scalars and

iS>
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(x, y) ⌘ h 
↵

(x) ̄
�

(y)i iS<

↵�

(x, y) ⌘ �h ̄
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�

(x)i (3.5)
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(x) ̄
�

(y)i iSa

↵�

(x, y) ⌘ hT a 
↵

(x) ̄
�

(y)i, (3.6)

for fermions, where T c(T a) denotes chronological (anti-chronological) time ordering along the real
time.3 The h. . .i denotes the averaging over an ensemble at time tmin.

This formalism therefore describes a general non-equilibrium system, where all the physical
macroscopic observables are averages over an ensemble. The CTP formulation originates from the
periodicity of the boundary conditions of the partition function in path integral formalism. The
introduction of additional Green’s functions leads to the need of doubling of the degrees of freedom
of the theory by including ghosts, which are defined on the lower branch of the contour. These states
do not appear as external one, but result in modification of the Feynman rules (see Appendix A).

In a general non-equilibrium system all these functions depend on both space-time coordinates.
This can be rephrased that they depend on both the relative coordinate r = x � y and the aver-
aged (macroscopic) one X = x+y

2 . In equilibrium, however, the system cannot have any space-time

3Often the upper branch is called ‘1’ and lower ‘2’ and the propagators are denoted as �> = �
21

, �< = �
12

,
�c = �

11

and �a = �
22

and similarly for the fermions.
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(essentially the Fourier transform in r) and define the Green’s functions (and analogically self-energies) in the
Winger space

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (17)

The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the other hand
describes large scale fluctuations, i.e. inhomogeneities. In the equilibrium in the Wigner space all Green’s functions
are described only by the dependence on the momentum Geq(p).

The contour Green’s functions obey the Dyson-Schwinger equation:
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where the superscript ‘0’ denotes the free Green’s functions, and ⇧, ⌃ are the self energies. After short derivation
these can be rewritten in the form of Kadano↵-Baym equations [13]:
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2 (⇧> � ⇧<) and analogously for ⌃

and the Green’s functions. These equations for the Green’s functions are exact functional equations,
which are however very non-trivial to solve. At this point we will use the approximations described
in the introduction. Firstly we go to the Wigner space. This is not an approximation in itself, but we
will additionally assume that one can take the tmin = �1, which results in discarding any memory
e↵ect. Next we perform the gradient expansion up to the first order in gradients. The equations
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can be taken to be +1 for practical
computations.
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the fermion collision terms is defined as:

9

self-energies

�(x, y) = �0(x, y)�
Z

C
d4z

Z

C
d4z0�0(x, z)⇧(z, z

0
)�(z0, y), (0.15)

S↵�(x, y) = S0
↵�(x, y)�

Z

C
d4z

Z

C
d4z0S0

↵�(x, z)⌃�⇢(z, z
0
)S⇢�(z

0, y), (0.16)

(�@2 �m2
�)�

<>
(x, y)�

Z
d4z

⇣
⇧h(x, z)�

<>
(z, y)�⇧

<>
(x, z)�h(z, y)

⌘
= C�, (0.17)

(i/@ �m�)S
<>
(x, y)�

Z
d4z

⇣
⌃h(x, z)S

<>
(z, y)� ⌃

<>
(x, z)Sh(z, y)

⌘
= C�, (0.18)

C� =

1

2

Z
d4z

�
⇧

>
(x, z)�<

(z, y)�⇧

<
(x, z)�>

(z, y)
�
, (0.19)

C� =

1

2

Z
d4z

�
⌃

>
(x, z)S<

(z, y)� ⌃

<
(x, z)S>

(z, y)
�
, (0.20)

✓
p2 � 1

4

@2
+ ip@ �m2

�

◆
�

<> �⇧h�
<> �⇧

<>
�h + i{⇧h,�

<>}+ i{⇧<>,�h}+O(r2
) = C�, (0.21)

✓
/p� i

2

/@ �m�

◆
S

<> � ⌃hS
<> � ⌃

<>Sh + i{⌃h, S
<>}+ i{⌃<>, Sh}+O(r2

) = C� , (0.22)

C� =

1

2

�
⇧

>
�

< �⇧

<
�

>
�� i

2

�{⇧>,�<}� {⇧<,�>}�+O(r2
), (0.23)

C� =

1

2

�
⌃

>S< � ⌃

<S>
�� i

2

�{⌃>, S<}� {⌃<, S>}�+O(r2
). (0.24)

⌃

>
A

III

(q)S<
(q) = ��4

Z
d4t

(2⇡)
4

d4k1

(2⇡)
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4 (2⇡)

4
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12
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.(0.25)
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⇥
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�
"
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�
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�
"
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�
"
�
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�
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, (0.26)
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�
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. (0.27)

2

propagators

the presence of distribution functions inside propagators          known collision term structure

where the propagators:
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i
�
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�
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�
/p+m

�
�
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�
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i
�
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�
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�
�
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�
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�
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�
�
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�
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�
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�
)
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�
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�
�
�
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�
f
�
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�

thermal part

”cut” propagators}
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The divergent part J�1

Type A Real Virtual External Type B Real Virtual External
↵(1�2✏2)

⇡✏

2

�↵(1�2✏2)
⇡✏

2

� ↵

⇡✏

2

↵

⇡✏

2

↵(1�2✏2)
⇡✏

2

�↵(1�2✏2)
⇡✏

2

� ↵

⇡✏

2

↵

⇡✏

2

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

2↵(1�2✏2)2

⇡✏

2

p
1�4✏2

L � 2↵(1�2✏2)2

⇡✏

2

p
1�4✏2

L
2↵(1�2✏2)
⇡✏

2

p
1�4✏2

L � 2↵(1�2✏2)
⇡✏

2

p
1�4✏2

L

Table 3. The divergent part coe�cients multiplying the tree level result a
tree

. For both diagrams of type
A and B the sum over di↵erent contributions, i.e. the CTP cuts, vanishes. When both types of diagrams
are added, the result gets helicity suppressed, i.e. terms with the ✏2 in the denominator cancel. The “Real”
includes both the emission and absorption. Empty space stands for no corresponding cut, while 0 when the
diagram exists, but gives no divergent part. The L denotes the logarithm as defined in table 6.

5.2 The finite T correction from thermal photons

After the divergent J�1 and J0 contributions are cancelled out, the remaining finite correction is
necessarily of the order of at least O(⌧2). Again, we will show first the explicit results for the s-wave,
which can be found in tables 4 and 5, where we have factorized ↵

⇡✏

2

atree. One can immediately see that
the separate contributions are significantly more complex, but simplify considerably after summing
over di↵erent cuts for a given self-energy. It is also worth noting that all the logarithms vanish already
at single self-energy level, which is a sign of cancellation of the collinear divergence. What seems even
more remarkable is that after adding all of the contributions together the result is extremely simple.
It can be written as:

a = atree (1 + �
a

) + O(⌧4) with �
a

=
8⇡

3
↵⌧2

1

1 � 4✏2 + ⇠2
. (5.2)

It is worth noticing that the leading thermal correction is suppressed not only by ↵⌧2 but also one
power of ⇠2. This is true not only in the case of s-wave, but also for a generic partial wave. In fact,
it turns out that the total O(⌧2) correction coming from thermal photons can be computed directly
from the tree level. The full result can be written as:

�v = �vtree � 4

3
⇡↵⌧2

@

@⇠2
�vtree + O(⌧4), (5.3)

which we found in both s- and p-wave. For generic partial wave the computation of the phase space
integrals is more involved and no closed form can be obtained without resorting to any additional
expansion. Therefore, we computed the corrections in the limit of ⇠ � 1, i.e. up to the order
O(⌧2, ⇠�10), retaining full dependence on e

�

and ✏. We found that the same formula holds, allowing
us to conjecture that it is valid even beyond the non-relativistic approximation.

– 18 –

cancels in 
every row
separately

) every CTP self-energy is IR finite
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The finite part J1
Type A Real Virtual External

2(1�⇠

2)
D

2

D

2

⇠
+ (1�2✏2)p

1

(✏,⇠)
2D2

D

2

⇠
+ 1

2
p
D

L (1�2✏2)(⇠2�3D)
2DD⇠

� 1
2
p
D

L

— ” — — ” —

� 4(1�2✏2)D
D

2

⇠

� 2(1�2✏2)⇠2

D

2

⇠
� f

1

(✏,⇠)p
DD

2

⇠

L 2(1�2✏2)(D�⇠

2)
D

2

⇠
+ f

1

(✏,⇠)p
DD

2

⇠

L

— ” — — ” —

— ” — — ” —

— ” — — ” —

� 4(1�2✏2)D
D

2

⇠

— ” —

2(1�2✏2)p
2

(✏,⇠)+(1�⇠

2)2

D

2

D

2

⇠
+ 4f

2

(✏,⇠)p
DD

2

⇠

L 16✏2(2�3✏2)�(3�⇠

2)2

D

2

⇠
� 4f

2

(✏,⇠)p
DD

2

⇠

L

Total: � 8(1�2✏2)
D⇠

Table 4. The finite O(⌧2) part coe�cients multiplying the ⇡
6

↵⌧2 a
tree

✏2
for diagrams of type A. The factors D,

D⇠ and polynomials pi and fi are defined in table 6.

This observed property of the leading correction seems accidental, however it is not the only
example of some “universality” in the temperature corrections. In the charged particle decay [16] the
finite correction was also found to be factorizable from the tree level and reads �⇡

3↵⌧
2, while in the

neutral Higgs decay to two fermions it vanishes [? ]. This strongly suggests that the correction is
related to the coupling to the multipole expansions of the initial or final state. In our case the charge
itself is zero, but higher moments are not, which might be the reason for the ⇠ suppression.

Moreover, we see that the thermal e↵ects do not lift the helicity suppression at the leading order,
even though the NLO T = 0 correction does. This is easy to understand, since it is the hard photon
emission from virtual internal bremsstrahlung (VIB) that changes the momentum structure of the
final state and lifts the helicity suppression in T = 0 case, while here such contributions are strongly
suppressed. In fact, next order in temperature already gives helicity braking contribution, which
expanded in the limit of ✏ ! 0 is:

�a✏=0
⌧

4

=
8⇡2�4↵⌧4

45

1

(1 + ⇠2)4
=

4⇡

45
↵⌧4

1

(1 + ⇠2)2
atree
✏2

���
✏=0

. (5.4)

The thermal correction can dominate over the tree level contribution to s-wave when ✏ is very small
(e.g., for SM leptons), but it nevertheless is parametrically smaller than both the p-wave and the
correction of order O(↵), because ⌧ ⇠ v2 as the distribution of DM particles is thermal. Also the
lifting of the helicity suppression is parametrically less important that its T = 0 counterpart, due to
⌧4, while both come from VIB and have the same order ⇠�8 suppression.

Finally, we would like to comment that the same relation (5.3) holds also for the Dirac fermion
case, as can be also expected from the structure of the final correction in table 5. Namely, for both self-
energy types A and B, the corresponding tree level factorizes from the correction, and the di↵erence
between the Majorana and Dirac cases is only in the existence of diagrams of type A in the former.
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example of some “universality” in the temperature corrections. In the charged particle decay [16] the
finite correction was also found to be factorizable from the tree level and reads �⇡

3↵⌧
2, while in the

neutral Higgs decay to two fermions it vanishes [? ]. This strongly suggests that the correction is
related to the coupling to the multipole expansions of the initial or final state. In our case the charge
itself is zero, but higher moments are not, which might be the reason for the ⇠ suppression.

Moreover, we see that the thermal e↵ects do not lift the helicity suppression at the leading order,
even though the NLO T = 0 correction does. This is easy to understand, since it is the hard photon
emission from virtual internal bremsstrahlung (VIB) that changes the momentum structure of the
final state and lifts the helicity suppression in T = 0 case, while here such contributions are strongly
suppressed. In fact, next order in temperature already gives helicity braking contribution, which
expanded in the limit of ✏ ! 0 is:
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The thermal correction can dominate over the tree level contribution to s-wave when ✏ is very small
(e.g., for SM leptons), but it nevertheless is parametrically smaller than both the p-wave and the
correction of order O(↵), because ⌧ ⇠ v2 as the distribution of DM particles is thermal. Also the
lifting of the helicity suppression is parametrically less important that its T = 0 counterpart, due to
⌧4, while both come from VIB and have the same order ⇠�8 suppression.

Finally, we would like to comment that the same relation (5.3) holds also for the Dirac fermion
case, as can be also expected from the structure of the final correction in table 5. Namely, for both self-
energy types A and B, the corresponding tree level factorizes from the correction, and the di↵erence
between the Majorana and Dirac cases is only in the existence of diagrams of type A in the former.
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factorized

Log terms
cancels in 

every row
separately)

no collinear
divergence!

separate contributions complicated, but when summed up...

strongly suppressed as at kinetic equilibrium

The finite part J1
Type A Real Virtual External

2(1�⇠

2)
D

2

D

2

⇠
+ (1�2✏2)p

1

(✏,⇠)
2D2

D

2

⇠
+ 1

2
p
D

L (1�2✏2)(⇠2�3D)
2DD⇠

� 1
2
p
D

L

— ” — — ” —

� 4(1�2✏2)D
D

2

⇠

� 2(1�2✏2)⇠2

D

2

⇠
� f

1

(✏,⇠)p
DD

2

⇠

L 2(1�2✏2)(D�⇠

2)
D

2

⇠
+ f

1

(✏,⇠)p
DD

2

⇠

L

— ” — — ” —

— ” — — ” —

— ” — — ” —

� 4(1�2✏2)D
D

2

⇠

— ” —

2(1�2✏2)p
2

(✏,⇠)+(1�⇠

2)2

D

2

D

2

⇠
+ 4f

2

(✏,⇠)p
DD

2

⇠

L 16✏2(2�3✏2)�(3�⇠

2)2

D

2

⇠
� 4f

2

(✏,⇠)p
DD

2

⇠

L

Total: � 8(1�2✏2)
D⇠

Table 4. The finite O(⌧2) part coe�cients multiplying the ⇡
6

↵⌧2 a
tree

✏2
for diagrams of type A. The factors D,

D⇠ and polynomials pi and fi are defined in table 6.

This observed property of the leading correction seems accidental, however it is not the only
example of some “universality” in the temperature corrections. In the charged particle decay [16] the
finite correction was also found to be factorizable from the tree level and reads �⇡
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neutral Higgs decay to two fermions it vanishes [? ]. This strongly suggests that the correction is
related to the coupling to the multipole expansions of the initial or final state. In our case the charge
itself is zero, but higher moments are not, which might be the reason for the ⇠ suppression.

Moreover, we see that the thermal e↵ects do not lift the helicity suppression at the leading order,
even though the NLO T = 0 correction does. This is easy to understand, since it is the hard photon
emission from virtual internal bremsstrahlung (VIB) that changes the momentum structure of the
final state and lifts the helicity suppression in T = 0 case, while here such contributions are strongly
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The thermal correction can dominate over the tree level contribution to s-wave when ✏ is very small
(e.g., for SM leptons), but it nevertheless is parametrically smaller than both the p-wave and the
correction of order O(↵), because ⌧ ⇠ v2 as the distribution of DM particles is thermal. Also the
lifting of the helicity suppression is parametrically less important that its T = 0 counterpart, due to
⌧4, while both come from VIB and have the same order ⇠�8 suppression.

Finally, we would like to comment that the same relation (5.3) holds also for the Dirac fermion
case, as can be also expected from the structure of the final correction in table 5. Namely, for both self-
energy types A and B, the corresponding tree level factorizes from the correction, and the di↵erence
between the Majorana and Dirac cases is only in the existence of diagrams of type A in the former.
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Operator Product Expansion 
clear separation of soft (thermal effects) 

and hard (annihilation/decay) modes

and simplicity of the O(T 2) corrections, the OPE offers a considerable simplification of

the calculations. The approach presented here can be straightforwardly applied to other

physically motivated situations such as the co-annihilation of charged states during freeze-

out. We note that OPE methods have been developed systematically before for thermal

field theory in the QCD context for SVZ sum rules at finite temperature [6, 7], and for the

study of more general spectral functions in the low-energy QCD plasma [8].

2 Charged particle decay at finite temperature

For definiteness we consider the spin-averaged total width of a fermion ψ with electric

charge q into another fermion χ of the same electric charge and other neutral particles in

an unpolarized thermal bath of photons and SM fermions f at a temperature T . Specific

examples are those of [3], ψ → χφ, where φ is a neutral scalar, and the more realistic muon

decay µ → eνµν̄e. We assume that the temperature of the bath is small compared to the

ψ mass, mψ ≫ T . but can be of the same order or even much larger than mass of the

other charged particle. We further assume that the decay occurs at rest with respect to the

thermal bath. The decay rate will be modified compared to the zero-temperature value by

interactions with the plasma.

The decay of ψ is caused by a weak interaction

L = λJµOµ + h.c. (2.1)

where Jµ is the fermion current and Oµ represents the neutral fields. For the toy situation

ψ → χφ, Jµ = χ̄PLψ (PL = 1−γ5
2 ) and Oµ = φ, while for muon decay Jµ = [ēµ]V−A,

Oµ = [ν̄µνe]V−A and λ = −GF/
√
2. By the optical theorem the decay width can be

expressed as

ΓT = λ2Lµν 2 Im {Tµν} (2.2)

to lowest order in the weak coupling λ, but to all orders in the electromagnetic interaction.

Here Im {Tµν} refers to the discontinuity of

Tµν =
1

2

∑

spin

(−i)

∫
d4x e−ip·x ⟨ψ;T | T {Jµ(0)J†

ν (x)}|ψ;T ⟩, (2.3)

and Lµν to the neutral particles, which are unaffected by the plasma, integrated over

phase space. |ψ;T ⟩ denotes the ψ one-particle state with momentum p = mψ;T v and non-

relativistic normalization in the thermal bath. We can decompose pµ = mψvµ + kµ, where

v is the four-velocity of the plasma and mψ the zero temperature mass. Since we assume

that the decaying particle is at rest with respect to the plasma, and T ≪ mψ, k is a soft

momentum with scaling k ∼ T .

The scale hierarchy T ≪ mψ allows us to separate the hard decay process from the

effects of the thermal bath by performing the OPE of the correlation function (2.3). The

short-distance physics is encoded in the Wilson coefficients, which can be computed at zero

temperature, while the thermal modifications are all encoded in the matrix elements of local

operators computed in the thermal bath. The situation is analogous to the calculation of
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)

The cross section can be written as the Im part of the forward scattering amplitude:

the difference of the mass-squares is O(T 2), it contributes to a higher-order correction, and

both can be identified. The above expressions can be simplified by using p = mψv with

v2 = 1, and v · k⊥ = 0. The straightforward evaluation then results in

Kψ = −
π

6
ατ2 + 2× 0 + 3

π

6
ατ2 +O

(
τ3
)
=
π

3
ατ2 +O

(
τ3
)
, (2.13)

where we defined τ = T/mψ. This has to be multiplied by q2 for a particle with electric

charge q in units of the positron charge. inserting this into (2.8) gives, explicitly,

ΓT = Γ0

(
1−

π

3
αq2τ2

)
+O

(
τ3
)
, (2.14)

in complete agreement with [3].

Comparison with the derivation of this result in [3] highlights the power of the OPE

approach. It also provides a physical interpretation of the correction as a time dilatation

effect due to the average kinetic energy of the particles due to collisions with the photons

of the plasma.

The finite-temperature modification of the decay width of a Majorana fermion [2]

mentioned in the introduction was obtained through effective field theory methods, which

are also based on systematic scale separation. The OPE nevertheless provides a more direct

approach to the inclusive decay width in the same way as the full development of heavy

quark effective theory is not required to compute the 1/M expansion of the inclusive or

semi-leptonic b hadron decay width in QCD.

3 Dark matter annihilation

Effective field theory and the OPE can also be applied to two-particle annihilation in

the thermal medium, provided the temperature is small compared to the annihilating

particles’ mass. This considerably simplifies the diagrammatic analysis of [4] and provides

an understanding of the temperature scaling of the leading thermal correction. Although

the method is general, we discuss below the annihilation of a heavy, electrically neutral

Dirac fermion into a pair of light charged fermions (mf ≪ T ), and refer to the heavy

fermion as the “dark matter” particle to establish contact with [4].

We assume at first that the annihilation process χχ̄ → f f̄ occurs through the local

four-fermion operator

Oann =
1

Λ2
(χ̄ΓAχ) (f̄ Γ′

Af) , (3.1)

where 1/Λ2 is an unspecified coefficient of mass dimension −2, and ΓA, ΓA,′ are Dirac

matrices, which may be multiplied by up to one covariant derivative.

The total spin-averaged annihilation cross section in the thermal background follows

from the optical theorem,

σvrel =
2

s
Im

{
(−i)

∫
d4x

1

4

∑

spin

⟨χ̄χ;T | T
{
Oann(0)O†

ann(x)
}

|χ̄χ;T ⟩
}
, (3.2)

[• Q2 Added (−i) since i times the forward amplitude is the operator product,

and σ is the imaginary part of the forward amplitude. This makes this eq.
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consistent with (3.3) and the definition of trχµν and the matching equation in

the appendix. Check.] where the state |χ̄χ;T ⟩ represents the annihilating pair in the

thermal photon background, p ≡ p1 + p2 is the total incoming momentum and s ≡ p2 the

center-of-mass energy squared. Once again, we assume that the center-of-mass frame of the

annihilation is at rest with respect to the plasma, in which case p =
√
s v with v defining

the plasma frame.

Since the annihilating particles do not couple to the thermal bath, the χ field part

of (3.2) is readily done by contracting the fields with the external state, which results in

some tensor LAB. The non-trivial part is the time-ordered product of the fermion current

JA = f̄ Γ′
Af . Since the final state particles are very energetic relative to the soft degrees

of freedom of the plasma, we perform the OPE

− i

∫
d4x e−ip·x T

{
Jµ
A(0)J

ν†
B (x)

}
=
∑

i

Ci
AB(p) · Oi , (3.3)

of which the matrix element within the thermal vacuum |ΩT ⟩ needs to be taken. Up to

dimension 4, the operators Oi are constructed from contractions with the metric tensor

and the plasma velocity v of

11 , FαβF γδ , mf f̄ Γf , f̄ Γ iDαf , (3.4)

with Γ a general Dirac matrix in spinor space. Apart from the unit operator there is no

operator of dimension lower than 4. This allows us to deduce immediately that the leading

order thermal correction is at least of the order O(T 4) or O(m2
fT

2).

The thermal matrix elements are easily computed, see Appendix A. The photon

“condensate” is given by

⟨ΩT |FαβF γδ |ΩT ⟩ =
π2

45
T 4
{(

gαγgβδ − gαδgβγ
)

− 2
(
vα
(
vγgβδ − vδgβγ

)
− vβ

(
vγgαδ − vδgαγ

))}
, (3.5)

The light fermion operator mf f̄ Γf is generated only with Γ = 11 due to parity invariance

and helicity conservation and is suppressed for mf ≪ T (and also for mf ≫ T , but we do

not consider this limit):

⟨ΩT |mf f̄f |ΩT ⟩ = O(m2
fT

2) ≪ O(T 4) . (3.6)

The addition of a covariant derivative alleviates the mf suppression. In the limit mf → 0

we obtain [• Q3 Note sign change and change of f and f̄ and derivative acting

now on f . Remember sign from permutation of fermion fields. Check sign here

and in the appendix!]

⟨ΩT | f̄ γµiDαf |ΩT ⟩ = −
7π2

180
T 4
(
gµα − 4 vµvα

)
. (3.7)

The short-distance coefficients from contracting the χ fields and the OPE depend on

the momenta p1 and p2 of the two annihilating particles. Since p1 + p2 = p =
√
sv,

OA 1 ≡ (pµ1p
ν
2Fµν)

2 , OAn ≡ pµi p
ν
jFαµF

α
ν , Of n ≡ f̄ /pi p

µ
j iDµ f (3.8)
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Possible operators up to dim 4:
Wilson coeffs. 

matched at T=0

Matrix elements: LO

No IR divergence to begin with!

O(↵T 4) O(↵T 4)

No dim 2 operator!

O(↵m2
fT

2)

1
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• The scaling with T is manifest

• Separation of  T=0 and  T-dependent contributions

• Significant simplification of the computations

• Clear physics interpretation: at             effects of thermal kinetic energy

OPE in finite temperature - 

Related EFT approach - 

*Analogy: semi-
leptonic Hb 

decay in QCD

In the Literature:

O(↵⌧2)

the (zero temperature) semi-leptonic decay width [9–11] of a heavy b hadron Hb. The

ψ particle plays the role of the b quark, while the thermal bath substitutes the hadronic

medium of soft light quarks and gluons in Hb. The finite-temperature ψ mass mψ;T is the

analogue of the B-hadron mass, the zero-temperature mass corresponds to the quark mass.

The relevant OPE of the time-ordered product in (2.3) is

− i

∫
d4x e−ip·x T {Jµ(0)Jν†(x)} = Cµν

0 ψ̄ψ + Cµν
2 ψ̄

i

2
σαβF

αβψ +O(m−3
ψ ), (2.4)

where the Wilson coefficients Cµν
0 and Cµν

2 are specific to the particular decay process.

[• Q1 How general is the equation? Can one exclude other 1/m2
ψ operators

beyond tree-level? For any kind of charged particle decay? Into any final state?

I find C2 = 0 at tree-level for the toy model.] However, they depend only on mψv,

and are to be computed by matching at T = 0. Hence only the zero-temperature mass

mψ enters. In general, the background plasma breaks Lorentz invariance and it might

be necessary to keep additional operators, which are not scalars, and have non-vanishing

matrix elements in the thermal bath. However, since we assume that the particle decays

at rest with respect to the plasma, the vector v coincides with the one already introduced

by the particle state itself, and (2.4) for muon decay is the same as appears in [12]. The

neglected term can contribute at most at O(T 3/m3
ψ), which is smaller than the putative

leading thermal correction.

As the second (magnetic) operator does not contribute in an unpolarized medium,

it remains to evaluate the matrix element ⟨ψ;T | ψ̄ψ |ψ;T ⟩ of the leading operator in the

thermal background. Since this is independent of the short-distance decay, it already follows

here that the thermal correction must be a universal modification of the zero-temperature

decay width. The matrix elements of the OPE in heavy particle states have themselves a

non-trivial 1/mψ expansion. Using the equation of motion, we can write [10]

ψ̄ψ = ψ†/vψ +
1

2m2
ψ

ψ̄ (iD⊥)
2 ψ +

i

4m2
ψ

ψ̄σαβF
αβψ +O(m−3

ψ ), (2.5)

where the transverse covariant derivative is defined as Dµ
⊥ ≡ gµν⊥ Dν ≡ (gµν − vµvν)Dν .

The usefulness of this equation stems from the fact that the first term is related to a

conserved current, and hence is matrix element is known exactly,

⟨ψ;T | ψ̄γµψ |ψ;T ⟩ = vµ (2.6)

from which it follows that

T µν = Cµν
0

(

1 +
1

2m2
ψ

⟨ψ;T | ψ̄ (iD⊥)
2 ψ |ψ;T ⟩

)

+O(m−3
ψ ). (2.7)

Therefore the leading thermal correction is a direct effect of the matrix element of the

kinetic energy operator Ok ≡ −ψ̄ (iD⊥)2

2m2
ψ

ψ evaluated in the thermal background. We may

interpret Kψ = ⟨ψ;T |Ok|ψ;T ⟩ as the average kinetic energy of the ψ particle acquired by

the interactions with the photons in the plasma. By dimensional analysis Kψ = O(T 2/m2
ψ).

– 3 –

Example: muon decay in thermal bath*
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2
σαβF
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ψ ), (2.4)
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2 ψ +
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ψ̄σαβF
αβψ +O(m−3

ψ ), (2.5)

where the transverse covariant derivative is defined as Dµ
⊥ ≡ gµν⊥ Dν ≡ (gµν − vµvν)Dν .

The usefulness of this equation stems from the fact that the first term is related to a
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from which it follows that
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Figure 1. The diagrams defining the one-loop contributions K1, K2 and K3, respectively, to the
kinetic operator matrix element. The filled square represents the operator insertion and diagrams
1 and 2 involve the usual QED vertices aside from the operator vertex.

Since Γ0 ≡ λ2Lµν 2 Im {Cµν
0 } is the zero-temperature width, the decay width at finite

temperature reads

ΓT = Γ0 (1−Kψ) +O(T 3/m3
ψ). (2.8)

This derivation explains in a rather straightforward manner three observations originally

made in [3]: 1) that soft and collinear divergences cancel in the sum of virtual correc-

tions and emission and absorption processes, 2) the leading finite-temperature correction

is O(T 2/m2
ψ), and 3) a universal factor multiplying the tree-level decay width.1

In contrast to QCD analogue of the semi-leptonic decay of Hb, where the soft physics

is non-perturbative, the matrix element Kψ of the kinetic operator in the thermal plasma

can easily be computed perturbatively. The one-loop diagrams are depicted in Fig. 1, in

terms of which the matrix element is given by the sum Kψ = K1 + 2K2 +K3. Since we

are interested in the temperature-dependent correction, we retain only the thermal part of

the equilibrium photon propagator

iD11
µν(x, y) = ⟨Ω;T | T {Aµ(x)Aν(y)} |Ω;T ⟩

=

∫
d4k

(2π)4
e−ik·(x−y) (−2π)gµνδ(k

2) fB(k
0), (2.9)

where fB(k0) = (e|k
0|/T − 1)−1 is the Bose-Einstein distribution of the photons in the

rest frame of the plasma. Writing down the diagrams explicitly, we find the spin-averaged

matrix elements

K1 =
i(ie)2

2m2
ψ

∫
d4k

(2π)4
iD11

αβ(k)
1

4mψ
tr

[
(/p+mψ)γ

α 1

/p− /k −mψ

(−i) (p⊥− k⊥)
2γβ

1

/p− /k −mψ

]
, (2.10)

K2 =
i(ie)2

2m2
ψ

∫
d4k

(2π)4
iD11

αβ(k) (2p⊥ + k⊥)
β 1

4mψ
tr

[
(/p+mψ)γ

α 1

/p− /k −mψ

]
, (2.11)

K3 =
i(ie)2

2m2
ψ

∫
d4k

(2π)4
iD11

αβ(k) (−igαβ⊥ )
1

4mψ
tr
[
/p+mψ

]
. (2.12)

Note that the particle mass in the thermal background, mψ,T , rather than the Lagrangian

mass mψ should be used in the evaluation of the low-energy matrix elements, but since

1It is worth noting that at O(T 4), more operators contribute and the matching coefficients depend on

more details of the hard process. Nevertheless, the temperature-dependent part arises from matrix elements

of local operators and the OPE greatly simplifies the calculation of such sub-leading terms.
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O(↵⌧2)LO …and the final correction:
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of the (zero-temperature) semi-leptonic decay width [9–11] of a heavy b-hadron Hb. The

ψ particle plays the role of the b quark, while the thermal bath substitutes the hadronic

medium of soft light quarks and gluons in Hb. The finite-temperature ψ mass mψ;T is the

analogue of the B-hadron mass, the zero-temperature mass corresponds to the quark mass.

The relevant OPE of the time-ordered product in (2.3) is

− i

∫
d4x e−ip·x T {Jµ(0)Jν†(x)} = Cµν

0 ψ̄ψ + Cµν
2 ψ̄

i

2
σαβF

αβψ +O(m−3
ψ ), (2.4)

where the Wilson coefficients Cµν
0 and Cµν

2 are specific to the particular decay process.

However, they depend only on mψv, and are to be computed by matching at T = 0. Hence

only the zero-temperature mass mψ enters. In general, the background plasma breaks

Lorentz invariance and it might be necessary to keep additional operators, which are not

scalars, and have non-vanishing matrix elements in the thermal bath. However, since we

assume that the particle decays at rest with respect to the plasma, the vector v coincides

with the one already introduced by the particle state itself, and (2.4) for muon decay is the

same as appears in [12]. The neglected term can contribute at most at O(T 3/m3
ψ), which

is smaller than the putative leading thermal correction.

As the second (magnetic) operator does not contribute in an unpolarized medium,

it remains to evaluate the matrix element ⟨ψ;T | ψ̄ψ |ψ;T ⟩ of the leading operator in the

thermal background. Since this is independent of the short-distance decay, it already follows

here that the thermal correction must be a universal modification of the zero-temperature

decay width. The matrix elements of the OPE in heavy particle states have themselves a

non-trivial 1/mψ expansion. Using the equation of motion, we can write [10]

ψ̄ψ = ψ̄/vψ +
1

2m2
ψ

ψ̄ (iD⊥)
2 ψ +

i

4m2
ψ

ψ̄σαβF
αβψ +O(m−3

ψ ), (2.5)

where the transverse covariant derivative is defined as Dµ
⊥ ≡ gµν⊥ Dν ≡ (gµν − vµvν)Dν .

The usefulness of this equation stems from the fact that the first term is related to a

conserved current, and hence is matrix element is known exactly,

⟨ψ;T | ψ̄γµψ |ψ;T ⟩ = vµ (2.6)

from which it follows that

T µν = Cµν
0

(
1 +

1

2m2
ψ

⟨ψ;T | ψ̄ (iD⊥)
2 ψ |ψ;T ⟩

)
+O(m−3

ψ ). (2.7)

Therefore the leading thermal correction is a direct effect of the matrix element of the

kinetic energy operator Ok ≡ −ψ̄ (iD⊥)2

2m2
ψ

ψ evaluated in the thermal background. We may

interpret Kψ = ⟨ψ;T |Ok|ψ;T ⟩ as the average kinetic energy of the ψ particle acquired by

the interactions with the photons in the plasma. By dimensional analysis Kψ = O(T 2/m2
ψ).

Since Γ0 ≡ λ2Lµν 2 Im {Cµν
0 } is the zero-temperature width, the decay width at finite

temperature reads

ΓT = Γ0 (1−Kψ) +O(T 3/m3
ψ). (2.8)
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CONCLUSIONS
1. how the (soft and collinear) IR divergence cancellation 

happen?                                                                       
automatic in thermal QFT formalism, cancellation at the level 
of every CTP self-energy

2. does Boltzmann equation itself receive quantum corrections?   
no, not at NLO                                                   

3. how large are the remaining finite T corrections?                  
strongly suppressed, of order O(↵T 4)

4.  the thermal OPE method provides a useful tool and also 
physics interpretation of the thermal correction 

To take home:  
complete framework for computations 

of relic density at NLO w/ thermal effects



BACKUP SLIDES



CLOSED TIME PATH
PATH TO BOLTZMANN EQUATION

Assumptions:

16

weak inhomogeneity

BoltzmannKadanoff-Baym

E (@t �H~p ·r~p) f = C[f ]. (0.1)

CLO = �h2
�

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel [f�f�̄(1± fi)(1± fj)�fifj(1± f�)(1± f�̄)] , (0.2)

���̄!ijvrel =
1

4E�E�̄

Z
d3~pi

(2⇡)32Ei

d3~pj
(2⇡)32Ej

|M��̄!ij |2(2⇡)4�(p�+p�̄�pi�pj). (0.3)

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�
, (0.4)

h���̄!ijvrelieq = �
"

h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄

#
�
n�n�̄ � neq

� neq
�̄

�
. (0.5)

CNLO ⇠
Z

d⇧��̄ij f�f�̄

⇢
|MLO

��̄!ij |2 + |MNLO T=0
��̄!ij |2 +

Z
d⇧� |M��̄!ij� |2 +

|MNLO T 6=0
��̄!ij |2 +

Z
d⇧�

⇥
f�

�|M��̄!ij� |2 + |M��̄�!ij |2
�

�fi
�|M��̄!ij� |2 + |M��̄i!j� |2

�� fj
�|M��̄!ij� |2 + |M��̄j!i� |2

�⇤�

�fifj

⇢
|MLO

ij!��̄|2 + |MNLO T=0
ij!��̄ |2 +

Z
d⇧� |Mij!��̄� |2 +

|MNLO T 6=0
ij!��̄ |2 +

Z
d⇧�

⇥
f�

�|Mij!��̄� |2 + |Mij�!��̄|2
�

�f�
�|Mij!��̄� |2 + |Mij�!�� |2

�� f�̄
�|Mij!��̄� |2 + |Mij�̄!�̄� |2

�⇤�
,(0.6)

CNLO = � ⇥h�NLO
ann vrelieq n�n�̄ � h�NLO

prod vrelieq neq
� neq

�̄

⇤
, (0.7)

i�(x, y) = hTC�(x)�
†
(y)i, (0.8)

and for the fermion

iS↵�(x, y) = hTC ↵(x) ¯ �(y)i, (0.9)

where here TC denotes the time ordering operation along the contour. They correspond to four

Green’s functions with real time arguments each:

i�>
(x, y) ⌘ h�(x)�†(y)i i�<

(x, y) ⌘ h�†(y)�(x)i (0.10)

i�c
(x, y) ⌘ hT c�(x)�†(y)i i�a

(x, y) ⌘ hT a�(x)�†(y)i, (0.11)

for scalars and

iS>
↵�(x, y) ⌘ h ↵(x) ¯ �(y)i iS<

↵�(x, y) ⌘ �h ¯ ↵(y) �(x)i (0.12)

iSc
↵�(x, y) ⌘ hT c ↵(x) ¯ �(y)i iSa

↵�(x, y) ⌘ hT a ↵(x) ¯ �(y)i, (0.13)

G(X, p) ⌘
Z t

max

t
min

d4ueipuG (X � u/2, X + u/2) . (0.14)

1

collision term derived from thermal QFT

weak interactions

gradient expansion

freeze-out happens
close to equilibrium 

)

quasi-particle approx.

@ ⌧ k

inhomogeneity
plasma excitation

momenta

Justification:
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RESULTS

IR divergence in separate terms:

5 Results

The result for the NLO correction to the collision term, after performing the integrations over the phase
space of final particles, depends on five physical quantities: m

�

, E
�

, m
f

, m
�

and T (or equivalently
m

�

setting the energy scale and dimensionless parameters e
�

, ✏, ⇠ and ⌧). Every contribution can be
expressed in a form: Z 1

0

d!f(!)S(!, e
�

, ✏, ⇠), (5.1)

where S is the properly normalized matrix element squared integrated over angles and energies of the
SM fermions and does not depend on the T , and the distribution function is f

B

for bosons and f
D

for
fermions. The temperature dependence is only via f(!), where ! is the energy of the thermal particle.
The integral over ! arises due to integration over the phase space (in emission and absorption) or
the virtual four-momentum (virtual corrections). In the model we studied there exist no closed form
expression for the total S(!, e

�

, ✏, ⇠) and therefore we will present the results in the non-relativistic
expansion for the lowest partial waves.8

The distribution function is vanishing exponentially for large !, therefore up to terms of the
order O(e�1/⌧ ), we can expand in ! around zero. Then one can easily isolate the soft IR divergent
contributions in S(!, e

�

, ✏, ⇠), since

J
n

⌘
Z 1

0

f
B

(!)!nd! =

⇢
div n  0

⇠ ⌧n+1 n > 0
, I

n

⌘
Z 1

0

f
D

(!)!nd! =

⇢
div n  �1

⇠ ⌧n+1 n > �1
. (5.2)

In both cases of thermal photons and fermions the finite NLO correction of the order O(↵⌧2) is
encoded in the linear term in ! of the function S. Note again that the integral I

n

appears only in the
massless fermions case, while otherwise the lower extreme of integration is m

f

and and the integral
cannot be solved analytically.

5.1 IR divergence cancellation

In zero temperature the structure of the IR divergence cancellation between the virtual and real
corrections in a given process can be understood by looking at the structure of the corresponding
self-energy diagram. Namely, all the IR divergent terms cancel out after summing of all the possible
cuts []. We have found that it is also true in finite temperature, with the additional cuts related to
the thermal parts of the propagators. This ensures that the collision term is finite, since it is directly
built out of self-energies ⌃<,>.

In order to show how the cancellation takes place, let’s discuss in detail the s-wave case for
the correction coming from thermal photons; the same discussion holds for higher partial waves and
analogous one for the corrections from thermal massless fermions.

At the one-loop level the amplitude can have divergent terms at most of the order O(!�1),
which at T = 0 leads to the logarithmic divergence in the soft limit. In finite temperature, this
results in the expansion of the function S having non-vanishing orders O(!n), with n � �1. Because
of the distribution function f

B

(!) this leads to two first orders in expansion being proportional to
J�1 and J0, respectively. As already pointed out, the latter one vanishes when both the emission
and absorption of thermal photons are included, due to the di↵erent sign of these contributions for
even orders in !. The results for the remaining part proportional to J�1 are given for all separate
self-energy diagrams in the table 3, where the tree level atree has been factorized.9

One can see that indeed the cancellation holds not only after summing all the contributions, but
also for every self-energy separately. The logarithm present in the last row is defined in table 6 and it

8Additionally, for the full energy dependence we have performed computations expanded in the scalar mediator
mass, up to the order O(⇠�10). Typically the scalar mediator of the hard interaction process is significantly heavier
than the DM (however one can also consider quasi-degenerate scenarios [3]). Nevertheless, excluding extremely fine
tuned scenarios, the expansion in ⇠ captures all the physics properties of the model, though one needs to retain up to
the order O(⇠�8) to see the helicity suppression lifting of the non-thermal NLO contribution.

9The fact that the divergence can be factorized from the tree level is related to the fact that it comes from the soft
region. The same structure of the divergence was found for the hard photon scattering in the thermal plasma [17].
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coming back to our example...

every contribution can be written in a form:

photon energy

Z 1

0
d!f�(!)S(!, e�, ✏, ⇠) f�(!) =

1

1� e!/T

expand in!

S =
1X

i=�1

sn!
n

note:

J�1 $ T = 0 soft div

J0 $ T = 0 soft eikonal

finite T corrections: J1 $ O(⌧2) …
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scale hierarchy: m� & m� � T � mf
+

+
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$

+

+

Mtree

Mtree

(Mtree)⇤

(Mexc
tree)

⇤ Mexc
tree

(Mexc
tree)

⇤Mexc
tree

(Mtree)⇤Ac.c.
IIIAIII

BII Bc.c.
II

Figure 5. Tree level annihilation diagrams for a Majorana fermion and the matching with the two loop
self-energies. Note the correspondence between reversing the arrows flow and crossing the external legs.

In the fermion part F both the T = 0 and the thermal parts contribute, giving

F = Tr
⇥
PR (/k2 + m

f

)PL

�
/t + m

�

�
PL (/k1 + m

f

)PR

�
/q + m

�

�⇤
⇥�2⇡ �

�
q2 �m2

�

�
"
�
q0
�
f
�

(q)
⇤ ⇥�2⇡ �

�
t2 �m2

�

�
"
�
t0
�
f
�

(t)
⇤

h
2⇡ �

�
k21 �m2

f

�
"
�
k01

� ⇣
1 � f eq

f

�
k01

�⌘i h
2⇡ �

�
k22 �m2

f

�
"
�
k02

� ⇣
1 � f eq

f

�
k02

�⌘i
, (4.4)

where the trace arise since the self-energy and the propagator at the l.h.s. of eq.(4.2) are contracted
as ⌃>

↵�

S<

�↵

. Note that, as explained in the introduction, we assume the background plasma to be in
equilibrium and therefore take the Fermi-Dirac distribution function f eq

f

for the SM fermions. Now
we write the �-functions by using

�
�
p2 �m2

�
=

1

2p0
�
�
�
p0 � E

p

�
+ �

�
p0 + E

p

��
, (4.5)

and integrate over dk01 and dk02. The negative energy solutions can be related via crossing symmetry
to di↵erent scattering processes by interpreting a negative energy particle in the initial (final) state
as a positive energy one in the final (initial) state. In this case all of these processes are kinematically
forbidden, so we get

⌃>

A

III

(q)S< (q) =
1

2E
�

1

(2⇡) �
�
q0 � E

�

1

� Z d4t

(2⇡)3 2E
�

2

�
�
t0 � E

�

2

�

Z
d3~k1

(2⇡)3 2E
f

1

d3~k2

(2⇡)3 2E
f

2

(2⇡)4 � (q + t� k1 � k2)

|M
A

|2
h
f
�

(q) f
�

(t)
⇣
1 � f eq

f

�
k01

�⌘⇣
1 � f eq

f

�
k02

�⌘i
. (4.6)

As we anticipated, the structure of the result is now manifestly as in eq.(2.3), namely those of a
thermally averaged cross-section times velocity multiplied by the statistical factors corresponding to
the process �1 (q)�2 (t) ! f (k1) f̄ (k2). Note that an integration in d4q is missing, the overall
sign is di↵erent and the d.o.f. factors h

�

h
�̄

are missing. The matrix element squared can be
recognized as the interference term between the two tree level diagrams for the annihilation process
�� ! ff̄ , as shown on fig.5.

|M
A

III

|2 = (�1)�4 S Tr [· · ·]
= �Mtree (Mexc

tree)
⇤
. (4.7)

The same procedure applied to the diagram B in fig.3 and to the corresponding diagrams with
reversed arrows leads to the identifications

|M
B

II

|2 = |Mtree|2, (4.8)

|Mrev

A

III

|2 = �Mexc
tree (Mtree)

⇤
, (4.9)

|Mrev

B

II

|2 = |Mexc
tree|2, (4.10)
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In the fermion part F both the T = 0 and the thermal parts contribute, giving
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where the trace arise since the self-energy and the propagator at the l.h.s. of eq.(4.2) are contracted
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. Note that, as explained in the introduction, we assume the background plasma to be in
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and integrate over dk01 and dk02. The negative energy solutions can be related via crossing symmetry
to di↵erent scattering processes by interpreting a negative energy particle in the initial (final) state
as a positive energy one in the final (initial) state. In this case all of these processes are kinematically
forbidden, so we get
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As we anticipated, the structure of the result is now manifestly as in eq.(2.3), namely those of a
thermally averaged cross-section times velocity multiplied by the statistical factors corresponding to
the process �1 (q)�2 (t) ! f (k1) f̄ (k2). Note that an integration in d4q is missing, the overall
sign is di↵erent and the d.o.f. factors h
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are missing. The matrix element squared can be
recognized as the interference term between the two tree level diagrams for the annihilation process
�� ! ff̄ , as shown on fig.5.
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The same procedure applied to the diagram B in fig.3 and to the corresponding diagrams with
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Figure 2. The DM self-energy at one loop. The same diagram with reversed arrows is not shown for simplicity,
but it is also consistently taken into account.

++

A CB

t
q

k2k1 � q

k1 k1 � t

q

Figure 3. The DM self-energy at two loops. The same diagrams with reversed arrows are not shown for
simplicity, but they are also consistently taken into account and denoted by a superscript rev in the following.

+ + +i⌃>
A =

AI AII AIII AIV

Figure 4. i⌃>
A as given by the finite temperature cutting rules. Uncircled and circled vertices denote

respectively type ‘1’ and type ‘2’. vertices.

We start from the calculation at leading order to show the correspondence between the self-energy
diagrams and the scattering (annihilation) ones. The self energy at one loop, fig.2, describes 1 $ 2
processes, which are not relevant for the relic density computation. Therefore, the LO annihilation
process is given by the two loop self-energies on fig.3. We will now show that they encode the amplitude
squared of the tree level annihilation process �� $ ff̄ . The self energies ⌃<,> are computed from
the diagrams discussed above by applying the finite temperature Feynman rules (see Appendix A),
with the proper treatment of the fermion number violating interactions of Majorana fermion as in
[25].

Let’s start by computing the contribution to ⌃>(q) from diagram A. In this case the left vertex
is of the type ‘1’ and the right ‘2’, while one has to sum over both types of internal vertices. This
leads to the sum of the four diagrams in fig.4, where uncircled and circled vertices denote type ‘1’
and type ‘2’ vertices, respectively. Note that the only diagram that we have to compute is AIII, since
the other three contain the only thermal part of the sfermion propagator, which for m

�

> m
�

� T
is exponentially suppressed. Fixing the fermion flow and assigning the momenta as in fig.3, once all
the kinematically forbidden terms are dropped, the result reads

⌃>
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. (4.2)

In the scalar part S we can take only the T = 0 part of the propagators, therefore

S =
i

(k1 � q)2 �m2
�

· �i

(k1 � t)2 �m2
�

. (4.3)

for transport phenomena at finite temperature it has no physical meaning to separate production from annihilation
processes, since they both concur to the determination of the phase space distribution functions of the various species,
in which the physical information is contained.
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Let’s start by computing the contribution to ⌃>(q) from diagram A. In this case the left vertex
is of the type ‘1’ and the right ‘2’, while one has to sum over both types of internal vertices. This
leads to the sum of the four diagrams in fig.4, where uncircled and circled vertices denote type ‘1’
and type ‘2’ vertices, respectively. Note that the only diagram that we have to compute is AIII, since
the other three contain the only thermal part of the sfermion propagator, which for m
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in which the physical information is contained.
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i⌃>
A =

Figure 2. The DM self-energy at one loop. The same diagram with reversed arrows is not shown for simplicity,
but it is also consistently taken into account.

++

A CB

t
q

k2k1 � q

k1 k1 � t

q

Figure 3. The DM self-energy at two loops. The same diagrams with reversed arrows are not shown for
simplicity, but they are also consistently taken into account and denoted by a superscript rev in the following.

+ + +i⌃>
A =

AI AII AIII AIV

Figure 4. i⌃>
A as given by the finite temperature cutting rules. Uncircled and circled vertices denote

respectively type ‘1’ and type ‘2’. vertices.

We start from the calculation at leading order to show the correspondence between the self-energy
diagrams and the scattering (annihilation) ones. The self energy at one loop, fig.2, describes 1 $ 2
processes, which are not relevant for the relic density computation. Therefore, the LO annihilation
process is given by the two loop self-energies on fig.3. We will now show that they encode the amplitude
squared of the tree level annihilation process �� $ ff̄ . The self energies ⌃<,> are computed from
the diagrams discussed above by applying the finite temperature Feynman rules (see Appendix A),
with the proper treatment of the fermion number violating interactions of Majorana fermion as in
[25].

Let’s start by computing the contribution to ⌃>(q) from diagram A. In this case the left vertex
is of the type ‘1’ and the right ‘2’, while one has to sum over both types of internal vertices. This
leads to the sum of the four diagrams in fig.4, where uncircled and circled vertices denote type ‘1’
and type ‘2’ vertices, respectively. Note that the only diagram that we have to compute is AIII, since
the other three contain the only thermal part of the sfermion propagator, which for m

�

> m
�

� T
is exponentially suppressed. Fixing the fermion flow and assigning the momenta as in fig.3, once all
the kinematically forbidden terms are dropped, the result reads

⌃>

A

III

(q)S< (q) = ��4

Z
d4t

(2⇡)4
d4k1

(2⇡)4
d4k2

(2⇡)4
(2⇡)4 � (q + t� k1 � k2)

i�11 (k1 � q) i�22 (k1 � t)| {z }
⌘S

PRiS
21 (k2)PLiS

12 (t)PLiS
21 (k1)PRiS

12 (q)| {z }
⌘F

. (4.2)

In the scalar part S we can take only the T = 0 part of the propagators, therefore

S =
i

(k1 � q)2 �m2
�

· �i

(k1 � t)2 �m2
�

. (4.3)

for transport phenomena at finite temperature it has no physical meaning to separate production from annihilation
processes, since they both concur to the determination of the phase space distribution functions of the various species,
in which the physical information is contained.
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cut scalar propagator
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summed over dotted and 
undotted indices
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Figure 5. Tree level annihilation diagrams for a Majorana fermion and the matching with the two loop
self-energies. Note the correspondence between reversing the arrows flow and crossing the external legs.

In the fermion part F both the T = 0 and the thermal parts contribute, giving

F = Tr
⇥
PR (/k2 + m

f

)PL

�
/t + m

�

�
PL (/k1 + m

f

)PR

�
/q + m

�

�⇤
⇥�2⇡ �

�
q2 �m2

�

�
"
�
q0
�
f
�

(q)
⇤ ⇥�2⇡ �

�
t2 �m2

�

�
"
�
t0
�
f
�

(t)
⇤

h
2⇡ �

�
k21 �m2

f

�
"
�
k01

� ⇣
1 � f eq

f

�
k01

�⌘i h
2⇡ �

�
k22 �m2

f

�
"
�
k02

� ⇣
1 � f eq

f

�
k02

�⌘i
, (4.4)

where the trace arise since the self-energy and the propagator at the l.h.s. of eq.(4.2) are contracted
as ⌃>

↵�

S<

�↵

. Note that, as explained in the introduction, we assume the background plasma to be in
equilibrium and therefore take the Fermi-Dirac distribution function f eq

f

for the SM fermions. Now
we write the �-functions by using

�
�
p2 �m2

�
=

1

2p0
�
�
�
p0 � E

p

�
+ �

�
p0 + E

p

��
, (4.5)

and integrate over dk01 and dk02. The negative energy solutions can be related via crossing symmetry
to di↵erent scattering processes by interpreting a negative energy particle in the initial (final) state
as a positive energy one in the final (initial) state. In this case all of these processes are kinematically
forbidden, so we get

⌃>

A

III

(q)S< (q) =
1

2E
�

1

(2⇡) �
�
q0 � E

�

1

� Z d4t

(2⇡)3 2E
�

2

�
�
t0 � E

�

2

�

Z
d3~k1

(2⇡)3 2E
f

1

d3~k2

(2⇡)3 2E
f

2

(2⇡)4 � (q + t� k1 � k2)

|M
A

|2
h
f
�

(q) f
�

(t)
⇣
1 � f eq

f

�
k01

�⌘⇣
1 � f eq

f

�
k02

�⌘i
. (4.6)

As we anticipated, the structure of the result is now manifestly as in eq.(2.3), namely those of a
thermally averaged cross-section times velocity multiplied by the statistical factors corresponding to
the process �1 (q)�2 (t) ! f (k1) f̄ (k2). Note that an integration in d4q is missing, the overall
sign is di↵erent and the d.o.f. factors h

�

h
�̄

are missing. The matrix element squared can be
recognized as the interference term between the two tree level diagrams for the annihilation process
�� ! ff̄ , as shown on fig.5.

|M
A

III

|2 = (�1)�4 S Tr [· · ·]
= �Mtree (Mexc

tree)
⇤
. (4.7)

The same procedure applied to the diagram B in fig.3 and to the corresponding diagrams with
reversed arrows leads to the identifications

|M
B

II

|2 = |Mtree|2, (4.8)

|Mrev

A

III

|2 = �Mexc
tree (Mtree)

⇤
, (4.9)

|Mrev

B

II

|2 = |Mexc
tree|2, (4.10)
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(part of) tree level |M|2

after inserting the propagators:

⌃>
AIII

(q)S< (q) =
1

2E�1

(2⇡) �
�
q0 � E�1

� Z d4t

(2⇡)3 2E�2

�
�
t0 � E�2

�

Z
d3~k1

(2⇡)3 2Ef1

d3~k2

(2⇡)3 2Ef2

(2⇡)4 � (q + t� k1 � k2) |MA|2
h
f� (q) f� (t)

⇣
1� f eq

f

�
k01

�⌘⇣
1� f eq

f

�
k02

�⌘i

⇥

one indeed recovers the known collision term and)

|MA|2 =

tree level annihilation 
contribution to the collision term

i⌃> $

repeating the same for B type diagrams the bottom line:

20
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21

i⌃3 =

k2 + s

q

k1 � qk1 + s � q

t

q

k1 + s k1

s

k2 $ + + +

M4 (Mtree)
⇤ (MA)

⇤MC MA (MC)
⇤ Mtree

(M4)
⇤

$ + + +

4 t C A A C t 4

Figure 6. An example three-loop self-energy diagram decomposed as a sum over di↵erent cuts to extract
⌃<, and the matching of the cut diagrams into scattering ones. ⌃< is obtained by taking the sum over the
possible diagrams in which the vertex attached to the external line on the left (right) is of type ‘1’ (‘2’). The
matching with scattering diagrams in the second line follows as explained for the LO case in section 4.2. In
particular the correspondence between reversing the arrows flow and crossing the external legs is the same as
displayed in fig.5, so for simplicity, from this figure on, we will denote with a single diagram with no arrows
the sum of the two corresponding diagrams.

where we can already observe that the momentum conservation delta function refers to a 2 ! 3
process �(q)�(t) ! f(k1)f̄(k2)�(s). To see that the considered diagram indeed encodes the cross-
section for the photon emission process, note that in the scalar part S we again take only the T = 0
part of the propagators, while the vector V and fermion F1, F2 parts, leaving understood the trace
over the Dirac matrices that can be factorized, are given by

V = �g
µ⌫

2⇡ �(s2)"(s0)
�
1 + f eq

�

(s0)
�
, (4.15)

F1 /
"
� i

(k2 + s)2 �m2
f

+ 2⇡ �
�
(k2 + s)2 �m2

f

�
"
�
k02 + s0

� ⇣
1 � f eq

f

�
k02 + s0

�⌘
#
⇥

h
2⇡ �

�
k22 �m2

f

�
"
�
k02

� ⇣
1 � f eq

f

(k02)
⌘i ⇥�2⇡ �

�
t2 �m2

�

�
"
�
t0
�
f
�

(t0)
⇤

(4.16)

F1 /
"

i

(k1 + s)2 �m2
f

� 2⇡ �
�
(k1 + s)2 �m2

f

�
"
�
k01 + s0

�
f eq
f

�
k01 + s0

�
#
⇥

h
2⇡ �

�
k21 �m2

f

�
"
�
k01

� ⇣
1 � f eq

f

(k01)
⌘i ⇥�2⇡ �

�
q2 �m2

�

�
"
�
q0
�
f
�

(q0)
⇤
. (4.17)

Note that the distribution functions accompanied by the on-shell delta functions can be used to read
out the corresponding scattering process, since (1 ± f

B,F

) denotes an outgoing particle, while ±f
B,F

an ingoing one. Finally the thermal part of the two diagonal fermion propagators give vanishing
contributions, since the corresponding processes are kinematically forbidden. In F1 one can see that

�
⇣
(k2 + s)2 �m2

f

⌘
is not compatible with �

⇣
k22 �m2

f

⌘
, and in F2 the same combination appears

with k2 ! k1. The result is then

⌃>

CA (q)S< (q) =
1

2E
�

1

(2⇡) �
�
q0 � E

�

1

� Z d4t

(2⇡)3 2E
�

2

�
�
t0 � E

�

2

�

Z
d3~k1

(2⇡)3 2E
f

1

d3~k2

(2⇡)3 2E
f

2

d3~s

(2⇡)3 2E
�

(2⇡)4 � (q + t� k1 � k2 � s)

M
C

(M
A

)⇤
h
f
�

(q) f
�

(t)
⇣
1 � f eq

f

�
k01

�⌘⇣
1 � f eq

f

�
k02

�⌘ �
1 + f eq

�

�
s0
��i

.(4.18)

In the remaining part of this section we describe the method of performing calculations empha-
sizing the di↵erence with respect to the T = 0 case. The results and its discussion will follow in
section 5.
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20 self-energy diagrams

example:

Z
d3~k1

(2⇡)
3
2Ef

1

d3~k2

(2⇡)
3
2Ef

2

(2⇡)
4
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f� (q) f� (t)
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1� f eq
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�
k01
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f
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(0.29)
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, (0.30)
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1 + f eq
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�
, (0.31)
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⇤
. (0.33)
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(0.34)

Z 1

0

d!f(!)S(!, e�, ✏, ⇠), (0.35)

a = atree (1 +�a) +O(⌧4) with �a =

8⇡

3

↵⌧2
1

1� 4✏2 + ⇠2
. (0.36)

�v = �vtree � 4

3

⇡↵⌧2
@

@⇠2
�vtree +O(⌧4), (0.37)

�a✏=0
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=

8⇡2�4↵⌧4
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1

(1 + ⇠2)4
=

4⇡

45

↵⌧4
1

(1 + ⇠2)2
atree
✏2

���
✏=0

. (0.38)

3

at NLO thermal effects do not change the collision therm structure )


