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FREEZE-IN VS. FREEZE-OUT

Fig. from Eur. Phys. J. C 78, 761 
(2018).

Freeze-in is in a sense the ’opposite’ of freeze-out

note: this part is often not 
shown, but conceptually 

worth highlighting…

freeze-out

freeze-in
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production

WHAT IS FREEZE-IN?

Thermal bath at
 T ≳ mχ

Dark Sector:
 , …χ

Thermal bath at
 T ≲ mχ

expansion

end of 
inflation Freeze-in defined like this

is a (very) old idea:

time

~empty

Dark Sector:
 , …χ

Visible Sector Dark Sector

T ⋙ mX

T ∼ mX

UV freeze-in

IR freeze-in

reheating

this is a standard production 
mechanism for e.g. sterile 

neutrino, gravitino, axino,…

however, old works 
focused on what now 

people call UV freeze-in

i.e. dominated by non-renormalizable 
operators and dependent on TRH

Freeze-in = the above mechanism 
through renormalizable operators

(IR freeze-in)

X
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FREEZE-IN…

THE GOOD THE BAD & THE UGLY

simple
very small couplings

couplings not of O(1)
(by any stretch of imagination)

(relatively) generic

predictive
hard to detect requires special 

initial condition

&
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FREEZE-OUT VS. FREEZE-IN

WIMPs
(Weakly Interacting Massive Particles)

FIMPs
(Feebly Interacting Massive Particles)

DM never in equilibrium with the SM bathDM starts in equilibrium with the SM bath

The role of the interaction with SM is 
to produce DM

The role of the interaction with SM is 
to suppress DM from its huge initial population

⟨σv⟩ ≲ 10−40 cm3/s
If through annihilation typical value required

⟨σv⟩ ∼ 10−26 cm3/s
If through annihilation typical value required

Relic abundance increases with ⟨σv⟩Relic abundance decreases with ⟨σv⟩

Requires 
~no initial abundance

Requires
 TRH ≳ mχ
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PORTALS

Higgs

Vector

Neutrino

ϵF′�μνF
μν
Yvisible sector dark sector

*portal mediator can also be non-reonoramlizable or composite (for more complex dark sector)

μΦH†H λ |Φ |2 H†Hor

mediator DM/mediator

DM/mediator

λΦνRνR yΦχ̄νRor and  has mass 
mixing with SM ’s

νR
ν

DM DM
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FREEZE-IN CALCULATION

E (@t �H~p ·r~p) f� = C[f�]

Boltzmann equation for        :f�(p) with initial condition:

fχ(p, t = 0) = 0

The collision term:

„gain” term „loss” term
(the difficult one, usually neglected in freeze-in!)(the simple one, describes production)

Note: to first approximation freeze-in production is much easier 
to determine than freeze-out!

The collision term can also contain:  
decays, annihilations, cannibalizations, …

C[ fχ] ∼ ∫ dΠij...→ab(2π)4δ4( . . . ) |M |2 [fi fj . . . (1 ± fχ)(1 ± fa)(1 ± fb) . . . −fχ fa fb . . . (1 ± fi)(1 ± fj) . . . ]
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FREEZE-IN CALCULATION

All this is pretty standard, so let’s go now for newer developments…

If the initial DM number density is small compared to the equilibrium number density
the backreaction term in the Boltzmann equation (3.1) can be neglected, and the evolution
of n� is given by

dn�

dt
+ 3H n� = 2��!��

K1(m�/T )

K2(m�/T )
neq
� , (3.7)

where Kj are modified Bessel functions of the second kind, ��!�� is the decay width and
neq
� is the equilibrium number density of �. In deriving Eq. (3.7), we assumed that the �

particles obey Maxwell-Boltzmann statistics, f� = exp(�E�/T ). Defining then Y ⌘ n�/s
and x ⌘ m�/T , and assuming again that the number of relativistic degrees of freedom remains
constant during DM production, Eq. (3.7) can be rewritten as

x

Y eq
�

dY

dx
= 2

��!��

H

K1(x)

K2(x)
. (3.8)

The approximate solution to this is [19]

⌦�h
2
' 4.48⇥ 108

g�
g⇤s

p
g⇤

m�

GeV

MP ��!��

m2
�

, (3.9)

where g� is the intrinsic number of degrees of freedom of the � field and the expression is
evaluated around T ' m�.

Taking then, for example, g⇤s ' g⇤ and ��!�� ' y2m�/(8⇡), where y is the coupling
strength between � and �, Eq. (3.9) yields a parametric estimate for the coupling su�cient
to produce a sizable DM abundance

y ' 10�12

✓
⌦�h2

0.12

◆1/2 ⇣ g⇤
100

⌘3/4
✓
m�

m�

◆1/2

. (3.10)

The implied small coupling value is compatible with the key assumption of the freeze-in
scenario that the DM particles have not thermalized with the bath particles above T & m�.
From Eq. (3.10) one can also see that the e↵ect for the freeze-in yield in increasing the
interaction rate between the visible sector and DM particles is opposite to that of the freeze-
out scenario, where larger interaction rate implies smaller final abundance. This is illustrated
in Fig. 2, and is further emphasized in Fig. 3, where a schematic representation of the DM
relic density as a function of the coupling y between DM and the visible sector is shown. It
should be noted that Eq. (3.10) gives an estimate of the magnitude of the coupling y in the
case where the initial DM abundance was zero or negligibly small. If this was not the case,
Eq. (3.10) should be taken as an upper bound for y.

As another example of freeze-in, consider a scenario where the observed abundance is
produced by 2 ! 2 annihilations. If the FIMP is a scalar and interacts with three scalar
bath particles �1, �2, �3 via the operator ⇣ � �1 �2 �3, the final abundance can be shown to
be [19]

⌦�h
2
' 1.01⇥ 1024

⇣2

g⇤s
p
g⇤

, (3.11)

where the expression is evaluated at T ' m�. In deriving Eq. (3.11) we assumed that the
masses of � particles are negligible compared to the mass of � and that the initial number
density of � was also negligible. To again generate a sizable DM abundance requires

⇣ ' 10�11

✓
⌦�h2

0.12

◆1/2 ⇣ g⇤
100

⌘3/4
. (3.12)
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Example: freeze-in from decay of  in equilibriumσ
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⇒

Why is this IR dominated?

σ χ

χ

If the initial DM number density is small compared to the equilibrium number density
the backreaction term in the Boltzmann equation (3.1) can be neglected, and the evolution
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Figure 3. A schematic representation of the DM relic density as a function of the coupling between
DM and the visible sector. The plot corresponds to a transition between regimes 1 and 2 in Fig. 1.

The required coupling values and assumptions of the initial abundance are not the only
di↵erences between the freeze-in and freeze-out scenarios, as also the relation between the
relevant mass scale and the bath temperature at the time of DM production is di↵erent.
In the freeze-out mechanism the relic abundance is produced at m�/T ' 10 . . . 30, whereas
for the freeze-in mechanism it arises during the epoch m/T ' 2 . . . 5 [19], where m is the
relevant mass scale in the DM production process. In the case of � ! �� decays this is
m�, and for annihilations �� ! �� it is max(m�,m�). Despite the fact that the decays
and annihilations of visible sector particles can start early and gradually build up the DM
abundance, the standard freeze-in involving only renormalizable operators is almost entirely
an IR process. This can be seen, in the simplest case where the DM is produced by decays of
bath particles, by either straightforwardly integrating Eq. (3.8) or considering the estimate
presented in Ref. [18], where in order to find the comoving DM number density at T ' m�,
one multiplies the number density of � particles by its decay rate and the time available for
these decays to populate the DM abundance,

n�

T 3
' t��!�� ' y2

MP

m�
, (3.13)

where t ⇠ MP/T 2 is the time-temperature relation for a radiation dominated Universe. The
result shows that the freeze-in is essentially an IR process, and is indeed consistent with
Eq. (3.9). The e↵ect of annihilations at higher temperatures has been further discussed in
Refs. [15, 240, 262, 266, 267].

The above calculation assumed that the initial number density of DM particles is neg-
ligible. Because the DM particles are assumed to have not been in thermal equilibrium with
the visible sector particles in the early Universe, their production mechanism can be sensitive
to the e↵ect of non-renormalizable operators, the so-called ultraviolet freeze-in [16, 19, 268–
273], or to the initial conditions set by cosmic inflation [259, 274–276]. This is again in
contrast to the freeze-out mechanism, where thermal equilibrium destroys all dependence on
initial conditions. This important feature of the freeze-in mechanism can be used to constrain
di↵erent models of feebly interacting DM, as we will discuss in Section 5.
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Figure 3. A schematic representation of the DM relic density as a function of the coupling between
DM and the visible sector. The plot corresponds to a transition between regimes 1 and 2 in Fig. 1.

The required coupling values and assumptions of the initial abundance are not the only
di↵erences between the freeze-in and freeze-out scenarios, as also the relation between the
relevant mass scale and the bath temperature at the time of DM production is di↵erent.
In the freeze-out mechanism the relic abundance is produced at m�/T ' 10 . . . 30, whereas
for the freeze-in mechanism it arises during the epoch m/T ' 2 . . . 5 [19], where m is the
relevant mass scale in the DM production process. In the case of � ! �� decays this is
m�, and for annihilations �� ! �� it is max(m�,m�). Despite the fact that the decays
and annihilations of visible sector particles can start early and gradually build up the DM
abundance, the standard freeze-in involving only renormalizable operators is almost entirely
an IR process. This can be seen, in the simplest case where the DM is produced by decays of
bath particles, by either straightforwardly integrating Eq. (3.8) or considering the estimate
presented in Ref. [18], where in order to find the comoving DM number density at T ' m�,
one multiplies the number density of � particles by its decay rate and the time available for
these decays to populate the DM abundance,
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where t ⇠ MP/T 2 is the time-temperature relation for a radiation dominated Universe. The
result shows that the freeze-in is essentially an IR process, and is indeed consistent with
Eq. (3.9). The e↵ect of annihilations at higher temperatures has been further discussed in
Refs. [15, 240, 262, 266, 267].

The above calculation assumed that the initial number density of DM particles is neg-
ligible. Because the DM particles are assumed to have not been in thermal equilibrium with
the visible sector particles in the early Universe, their production mechanism can be sensitive
to the e↵ect of non-renormalizable operators, the so-called ultraviolet freeze-in [16, 19, 268–
273], or to the initial conditions set by cosmic inflation [259, 274–276]. This is again in
contrast to the freeze-out mechanism, where thermal equilibrium destroys all dependence on
initial conditions. This important feature of the freeze-in mechanism can be used to constrain
di↵erent models of feebly interacting DM, as we will discuss in Section 5.
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time vs. temperature:

t(T = 0.1GeV) − t(T = 1GeV)
t(T = 1GeV) − t(T = TRH)

∼ 100

t ∼ MP /T2

⇒
and produced DM  time x rate:∝
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RELATIVISTIC OR NOT?

Lebedev, Toma 1908.05491 & subsequent works

the reaction rates using the step function ✓(T � TEW). While in the broken phase
relativistic e↵ects are unimportant, at high temperature they are significant. In this
case, it is important to take into account the thermal mass corrections which represent
the leading thermal e↵ects. For the Higgs field, the corrected mass–squared is

m
2
h ' m

2
h0 +

✓
3

16
g
2
2 +

1

16
g
2
1 +

1

4
y
2
t +

1

2
�h

◆
T

2
, (7)

with mh0 being the zero temperature Higgs mass; g1,2, yt are the gauge and top quark
Yukawa couplings, and �h is the Higgs self–coupling. In the symmetric phase, m2

h0 =
��hv

2 in the convention Vh = �h(h2 � v
2)2/4. On the other hand, we assume that

DM is not thermalized and ms0 does not receive significant thermal corrections (which
would not be suppressed by �hs).

We also note that the DM mass changes during the phase transition and receives
an extra contribution,

m
2
s = m

2
s0 +

1

2
�hsv

2
. (8)

For �hs in the range of interest, this e↵ect is negligible unless s has an MeV (or below)
mass. However, for such light dark matter only the decay production mode in the
broken phase is important, so only the total m2

s matters. For heavier DM, we make
no distinction between ms0 and ms.

3 Relativistic reaction rates

In this section, we compute the 2 ! 2 and 1 ! 2 relativistic reaction rates necessary
for evaluation of the DM relic abundance. We follow closely our earlier work [3] where
analogous computations for self–interacting scalar DM have been performed.

The a ! b reaction rates per unit volume are

�a!b =

Z  Y

i2a

d
3
pi

(2⇡)32Ei
f(pi)

!  
Y

j2b

d
3
pj

(2⇡)32Ej
(1 + f(pj))

!
|Ma!b|2 (2⇡)4�4(pa�pb).

(9)
Here Ma!b is the QFT transition amplitude, in which we also absorb the initial
and final state symmetry factors; f(p) is the Bose–Einstein momentum distribution
function. In thermal equilibrium, f(p) can be written in a covariant form as

f(p) =
1

e
u·p
T � 1

, (10)

where uµ is the 4–velocity of our reference frame relative to the gas rest frame in which
u = (1, 0, 0, 0)T .

For freeze–in production of DM, the final state enhancement factors 1 + f(pj) can
be set to 1 since DM is not thermalized and its abundance is much lower than that in
equilibrium.

3

Relativistic reaction rate:

I) In freeze-out one (typically) takes 
Maxwell-Boltzmann distribution, 

should one use here:

the reaction rates using the step function ✓(T � TEW). While in the broken phase
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broken phase is important, so only the total m2
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no distinction between ms0 and ms.

3 Relativistic reaction rates

In this section, we compute the 2 ! 2 and 1 ! 2 relativistic reaction rates necessary
for evaluation of the DM relic abundance. We follow closely our earlier work [3] where
analogous computations for self–interacting scalar DM have been performed.
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Here Ma!b is the QFT transition amplitude, in which we also absorb the initial
and final state symmetry factors; f(p) is the Bose–Einstein momentum distribution
function. In thermal equilibrium, f(p) can be written in a covariant form as

f(p) =
1

e
u·p
T � 1

, (10)

where uµ is the 4–velocity of our reference frame relative to the gas rest frame in which
u = (1, 0, 0, 0)T .

For freeze–in production of DM, the final state enhancement factors 1 + f(pj) can
be set to 1 since DM is not thermalized and its abundance is much lower than that in
equilibrium.

3

II) when relativistic, not obvious if 

which poses a question of the 
feedback of DM distribution to the 

production rate

(1 ± f ) ≈ 1

Figure 1: Comparison of the Bose–Einstein and Maxwell–Boltzmann reaction rates

in the Higgs thermal bath.

3.3 Implications

The computed reaction rates are to be used in the Boltzmann equation in order to
determine the DM density evolution. Compared to their Maxwell–Boltzmann counter-
parts, these rates are enhanced due to the Bose–Einstein distribution function peak-
ing at low momenta. In general, the Bose–Einstein rates can exceed the Maxwell–
Boltzmann ones by orders of magnitude [3], however the e↵ect is sensitive to the
thermal mass: for larger masses it is less pronounced. In the case at hand, the Higgs
field receives a large thermal correction due the gauge and top quark couplings. The
resulting enhancement is therefore modest as shown in Fig. 1. It reaches 50% for the
annihilation mode and 20% for the decay.

It is important to note that the inclusion of the thermal mass regulates the high–T
behaviour of the rates which is equivalent to curing the infrared divergence asmh,s ! 0.
Let us set ms = 0 and consider the limit mh ! 0. In this case, we find that the 2 ! 2
rate diverges as lnmh which is unphysical. Including the thermal mass, we get

�2!2 / T
4 ln

T

mh
! c T

4
, (23)

which also represents the high–T behaviour. Here c is a constant depending on the
couplings. Therefore, the rate exhibits the expected scaling behaviour T 4.

4 The Boltzmann equation

The evolution of the dark matter number density n(t) is governed by the Boltzmann
equation. In our case, it takes the form

ṅ+ 3Hn = (4� 3✓(TEW � T ))⇥ 2�2!2 + ✓(TEW � T )⇥ 2�1!2 , (24)

where the dot denotes a time derivative, H is the Hubble rate; the factor of 2 is
due to production of 2 DM particle in each reaction, and the ✓–functions take into

6

At early stages of evolution DM is very 
diluted allowing for such approx.

but when  this is less obvious… T ∼ m
~50% effect

but it is here that most 
production happens…

instead?
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MORE COMPLETE PICTURE

Freeze-in before
electroweak

symmetry breaking

Freeze-in after
electroweak

symmetry breaking

Thermalisation of 
the dark sector
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Inverse temperature of the SM thermal bath

Freeze-in during electro-
weak symmetry breaking

Figure 1. Sketch of the evolution of the co-moving number density of light scalars with decreasing
temperature of the SM thermal bath. Note that the relative size of the di↵erent regimes and the
magnitude of the di↵erent e↵ects is not to scale.

Such a set-up is well-known in the context of keV sterile neutrinos, for which production
and decay both proceed through a tiny mixing with SM neutrinos [11] (see also Refs. [12–14]
for alternative ways to produce sterile neutrinos via freeze-in). The case of scalar and vector
particles that mix with the SM Higgs boson or the SM photon, respectively, was first explored
in Ref. [15].1 This work however focused on the case of a sub-dominant DM component with
a lifetime short compared to the age of the Universe. Moreover, the freeze-in production of
light scalars was calculated in a very approximate way, considering only a limited range of
temperatures and a few production processes.

In the present work we point out that the production in the Early Universe of light
scalars with Higgs mixing is in fact surprisingly complex. First of all, the freeze-in production
proceeds in three stages, corresponding to temperatures before, during and after electroweak
symmetry breaking (EWSB). Although the dominant contribution to the DM abundance
typically arises after EWSB, it is essential to correctly account for the e↵ect of the electroweak
phase transition (EWPT) in order to avoid unphysical contributions from high temperatures.
Furthermore, since the light scalars are not protected by a stabilising symmetry, 2 ! 3 and
3 ! 2 processes may play an important role. This means that the co-moving DM density is
not necessarily constant after the end of freeze-in and additional considerations are needed
to calculate the subsequent evolution of the dark sector.

A number of previous works have studied the freeze-out of number-changing processes
in a dark sector that is initially in kinetic and chemical equilibrium [19–22]. In the present
work, we extend these studies by considering the evolution of a dark sector where chemical
equilibrium is not guaranteed.2 For this purpose, we consider 2 ! 3 processes for relativistic
initial states in order to address the question whether or not number-changing processes are
e�cient enough to thermalise the dark sector. Using a combination of analytical approxi-
mations and numerical algorithms we can then calculate the present day abundance of light
scalars for arbitrary model parameters.

1The case of stable scalar singlets produced via the Higgs portal, was considered previously in Refs. [16–18].
2Refs. [18, 23] provide a similar discussion in the context of 2 ! 4 processes, while Ref. [24] considers

2 ! 3 processes for the case of vector DM.

– 2 –

Heeba, Kahlhoefer, Stocker 1809.04849

Illustration for production through Higgs portal:

One should be careful to include such (potentially relevant) effects!
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Let’s come back to the simple example:

MODIFICATIONS DUE TO T ≠ 0

σ χ

χ
Is condition  necessary?mσ > 2mχ

sider as an example an explicit Higgs-portal model in which the scenario can natually

be realised, and briefly examine various criteria to ensure its consistent implemen-

tion. We then proceed to a full numerical study of the predicted relic density and

describe various aspects of our scans and results, as well as the e↵ect of applying

relevant astrophysical and collider constraints.

2 Freeze-in with a thermally induced mass

2.1 Thermal mass in the early Universe

As mentioned above, in this article we study the freeze-in production of DM via some

mediator decays that are energetically allowed solely in a thermal bath. We expect

this to occur in general, since frozen-in DM is usually assumed to be produced by

particle species which are in thermal equilibrium with the SM plasma, and which

should therefore develop a thermal mass correction [29–31] in the early Universe,

similarly to the SM particles [32]. Moreover, it is this e↵ective mass that allows

“forbidden” decays to occur, as is the case for instance for plasmons (thermally-

dressed photons in a medium) that can decay to neutrinos [33].

Generally, at high temperatures applicable to the early Universe the thermal

mass of a particle is proportional to the temperature. As this e↵ect will be critical in

realizing our forbidden freeze-in scenario, below we briefly review the case of a scalar

mediator field S.

k

p

Figure 1. One-loop self-energy for the scalar induced by its self-interaction.

In general, a scalar field features a self-interaction term, which implies that it

does not need to interact very strongly with the rest of the plasma in order to develop

a sizeable thermal mass. In the following we assume a self interaction term for S of

the form

LS = �
�S

4!
S
4
. (2.1)

The self-energy diagram, shown in Fig. 1, can then be readily evaluated at a finite

temperature T , leading to the self-energy term

⇧S =
�S

2�

1X

n=�1

Z
d
3~k

(2⇡)3
1

!2
n

� !
2

k

,

– 4 –

Thermal mass of  in  theory:σ λσ4

where ⇧S corresponds to the corrected mass of S, i.e., mS,T
2 = mS

2 + ⇧S, and we

have denoted � = T
�1, !n = 2n⇡�

�1, and !
2

k
= ~k

2 + mS
2.

The sum over n is evaluated by a standard procedure:1 by transforming it to

an integral over a complex quantity ! while introducing a function which has poles

corresponding to !n and unit residue. One obtains

⇧S = i
�

2

Z
d
4
k

(2⇡)4
1

k2 � mS
2 + i✏

+
�

2

Z
d
3~k

(2⇡)3
fB(!k)

!k

,

where we identify the first term as the T = 0 one-loop correction to mS, and the

second one (denoted ⇧(T )

S
henceforth) as the correction due to the finite temperature

of the medium with fB ⌘
�
e
!k� � 1

��1
the Bose-Einstein phase-space distribution.

The appearance of the phase-space distribution function regulates this otherwise

quadratically divergent integral since it introduces a natural “cut-o↵” energy pro-

portional to the temperature. The final result scales quadratically with temperature:

⇧(T )

S
⇠ T

2. In the high temperature limit, we can therefore neglect the mS contribu-

tion to !k and arrive at

⇧(T )

S
=

�

24
T

2
. (2.2)

In this limit, since the vacuum one-loop contribution is expected to be small com-

pared to the tree-level one, we can neglect all T = 0 contributions and obtain an

estimated form of the mass of S,

mS,T
2

⇡ ⇧(T )

S
=

�S

24
T

2
. (2.3)

It is well known, though, that naive perturbation theory does not work well when

finite temperature e↵ects are included (for examples see [29–31]). This can be seen

by calculating the thermal correction using m
2

S
!

�

24
T

2, i.e., by re-summing the so-

called “daisy” diagrams, where one would expect to get a correction of order at least

O(�2). However, this is not the case in finite temperature calculations, since such

diagrams induce correction O(�3/2), which may be important especially for larger

values of the self-interaction coupling. We have explicitly checked that for � . 1 this

re-summation leads to at most a 20% variation in the thermal mass. We will thus

use the approximate result eq. (2.3) throughout this paper.

2.2 Freeze-in and mediator decay

We are interested in estimating the final relic density of a DM particle � interact-

ing extremely feebly with the Standard Model particles. The key assumption is

that � was never in thermal contact with the SM sector during the thermal his-

tory of the Universe, nor was it ever produced through some other means in the

1Details can be found in the literature, e.g., [29–31].
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Following the freeze-in calculation as discussed before:

(a) (b)

Figure 3. (a) The relic abundance for mS = 1 GeV, ↵ = 0.1, and y� = 5 ⇥ 10�11. The

exact result is shown in gray, while the other lines correspond to the limits of dominant

(blue) and vanishing (orange) mS . (b) The area in the plane ↵ � y�, where the observed

relic can be obtained for 10 MeV  mS , m�  1 TeV. The two shaded regions correspond

to the forbidden freeze-in region mS < 2m� (orange) and the standard one mS > 2m�

(blue).

⌦h
2 scales predominantly linearly with the DM mass. Notice furthermore that in the

case where the temperature correction never dominates (i.e. ↵ T < mS), the relic

abundance is given by eq. (2.12) with the decay width (2.21), which is the standard

freeze-in case, as expected.

Finally, let us conclude this section by presenting some numerical results in the

case where both mS and mS,T play an important role as the temperature varies. In

this case one has to calculate YDM,0 by including both mass terms. That is, the

evolution of YDM as in eq. (2.7) needs to be solved, with mS,T given by eq. (2.14),

numerically.

An example of typical dependence of ⌦h
2 on m� for the production of DM due to

the decay of S, is shown in Fig. 3a. The two extreme cases of ↵ = 0 (standard freeze-

in) and mS = 0 (dominance of the thermal corrections to the mass) are shown by

dashed blue and orange lines, respectively, while the exact numerical result is shown

in solid grey. Notice that the transition between the two limits happens suddenly at

m� ⇡ mS/2 which is where the blue line terminates since S ! �̄� becomes forbidden

in the vacuum.

In Fig. 3b we present the Yukawa coupling y� as a function of ↵ that give the

observed ⌦h
2 for the scanned range of masses 10 MeV  mS, m�  1 TeV, hence

overlapping regions between the two regimes may correspond to completely di↵erent

values of the masses. We observe two distinct regimes: the region of standard freeze-

– 12 –

⇒  nearly independent of Ωh2 mχ

if no thermal mass

mχY0 ∼ α4y2
χ K1(α)m2

S = αT2 ⇒
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’FORBIDDEN’ FREEZE-IN
Darme, AH, Karamitros, Roszkowski 1908.05685

Figure 8. Points satisfying the observed relic density at 95%CL in the plane �S � y� for

mS < 2m� (orange) and mS > 2m� (blue).

10�1 100 101

mS [GeV]

10�13

10�11

10�9

10�7

10�5

10�3

10�1

101

⌧
S

[s
]

BBN bounds

LHCb

E949,CHARM

SN1987

Forbidden FI

Standard FI

FASER,3ab�1

SHiP

Figure 9. Experimental limits for our model, for points satisfying the observed relic

density at 95%CL in the plane mS � ⌧S for mS < 2m� (orange) and mS > 2m� (blue).

3.3 Experimental limits

In dark Higgs models dark matter particles are largely out-of-reach of current exper-

iments due to their extremely small interactions with the visible sector. The mixing

of the scalars h and S induces, however, interactions of S with the SM particles which

are proportional to ✓, hence mediating the decay of S to SM particles (if kinemati-

cally allowed). Since ✓ is suppressed by powers of vS/v, the dark Higgs boson S is

typically long-lived, as shown in eq. (3.7) – particularly for low masses. In this case

bounds from both colliders and fixed target experiments [48], and for longer life-time,

from astrophysics [40] apply. Such limits have traditionally been very well-studied.

We summarise them below and in Figure 9 which indicates the most relevant ones
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3.3 Experimental limits

In dark Higgs models dark matter particles are largely out-of-reach of current exper-

iments due to their extremely small interactions with the visible sector. The mixing

of the scalars h and S induces, however, interactions of S with the SM particles which

are proportional to ✓, hence mediating the decay of S to SM particles (if kinemati-

cally allowed). Since ✓ is suppressed by powers of vS/v, the dark Higgs boson S is

typically long-lived, as shown in eq. (3.7) – particularly for low masses. In this case

bounds from both colliders and fixed target experiments [48], and for longer life-time,

from astrophysics [40] apply. Such limits have traditionally been very well-studied.

We summarise them below and in Figure 9 which indicates the most relevant ones
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Required coupling to get correct :Ωh2

forbidden freeze-in

standard freeze-in

Experimental limits on the 
example Higgs portal model

points: Bayesian scan results

Note that more points found in 
the forbidden freeze-in regime
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MODIFICATIONS DUE TO  CTD.T ≠ 0

· · ·

· · ·
· · ·

· · ·

· · ·

Figure 3: Leftmost and middle diagram: processes where the QCD gluons induce soft scat-

terings with plasma constituents (coming from the HTL resummed gluon propagator). Both

coloured/charged particles (⌘, q) can undergo multiple scatterings. The same processes occur

with the U(1)Y gauge boson. Rightmost diagram: self-energy of the Majorana fermion with

an arbitrary number of soft gauge boson ladder rungs.

spacelike (see Eq. (3.11)). These soft exchanges make the intermediate virtual ⌘ bosons and

quarks almost on shell, with a lifetime (or formation time) of order 1/g2T , which is long

and parametrically of the same order of the soft-gauge-boson-mediated scattering rate (see

e.g. [58]). Hence, many of these soft scatterings can take place during the formation time of

the outgoing pair, so that their quantum-mechanical interference, the LPM e↵ect, has to be

accounted for in a procedure called LPM resummation. Under this procedure, we speak of

e↵ective 1 $ 2 processes to describe the 1+n $ 2+n processes being consistently accounted

for at leading order. In the context of freeze-in production rates in the early universe, LPM

resummation was introduced for right-handed Majorana neutrinos in [20, 21, 51] and [23] in

the symmetric and broken electroweak phases, respectively.

In order to make the connection between the e↵ective 1 $ 2 processes and the imaginary

part of a retarded correlator Im⇧LPM
R (or the corresponding spectral function) we can consider

the self-energy of the fermion � with an arbitrary number of soft-gluon rungs connecting the

scalar and the quark, as shown in Fig. 3 (rightmost diagram). These soft gluons also give

rise to self-energy contributions for the ⌘ and the quark, which have to be resummed in their

propagators and are not shown graphically.

Having delineated the physics of the 1 + n $ 2 + n processes, we can now pass to the

main technical ingredients one needs to compute Im⇧LPM
R . We borrow the notation and

computational setting from refs. [20, 21, 23, 51], where the production rate of a Majorana

fermion involves the Higgs doublet and a lepton in the context of leptogenesis. First, we

define an e↵ective Hamiltonian

Ĥ ⌘ �
M2

2k0
+

m2
q �r

2
?

2Eq
+

M
2
⌘ �r

2
?

2E⌘
+ i�(y) , y ⌘ |y?| , (4.1)

where r? is a two-dimensional gradient that operates in two directions orthogonal to k, the
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Biondini, Ghighlieri 2012.09083

Multiple soft and 2-2 scatterings at :T ≫ mDM

not only thermal masses, but also scatterings can be very important - 
even for renormalizable interactions!

Production rate in the ultra-relativistic regime

2 ! 2 scatterings

Mb =Ma = + +

Considered by M. Garny and J. Heisig (1809.10135) for T  M

(possibly some issues with IR of some processes)

We exploit the master equation and the LO equivalence with the Boltzmann
equation for k ⇠ ⇡T

ḟ�(k) = nF(k)�(k)

����
hard

2$2

+ · · ·

=
1
4k

Z
d⌦2$2

X

abc

���Mab

c�(p1, p2; k1, k)
���
2
fa(p1) fb(p2) [1± fc(k1)] + · · ·

R
d⌦2$2 =

R
q 1/(2Eq)(2⇡)4�(4)(P1 + P2 �K1 �K), for q 2 p1, p2, k1

S. Biondini (Basel Universität) Seminar Series March 16th 18 / 31

Conclusions and Outlook

Summary

we studied the impact of the ultra-relativistic regime on the production of a feebly
interacting DM particle

Before: in renormalizable models bulk DM population produced at T ⇠ M

Our work: this is not always the case
high-temperature 1 $ 2, 2 ! 2 can give O(1) contribution

simplified dark matter model:
� Majorana fermion DM and ⌘ mediator charged under SU(3) ⌦ U(1)Y

freeze-in with large impact 1 $ 2, 2 ! 2

M = 2 TeV,�M = 0.2 TeV )
(⌦h2)full
(⌦h2)Born

' 10

M = 0.2 TeV,�M = 2 TeV )
(⌦h2)full
(⌦h2)Born

' 1.2

Our main uncertainty comes from the lack of NLO rates (state-of-art M.Laine (2013))

) we estimate it with and without exponential suppression in LPM rates

S. Biondini (Basel Universität) Seminar Series March 16th 27 / 31

S. Biondini, talk at HECA seminar, March 2021



17

FREEZE-IN FROM OTHER PROCESSES

Our motivation: 

IS THERE ANY OTHER PROCESS POSSIBLE LEADING 

TO BETTER DETECTION PROSPECTS?

Until now we discussed freeze-in from decays. 
What about other production channels? E.g:

annihilations and scatterings
very large literature, see e.g. 

1706.07442 for a review

sequential
Belanger et al. 2005.06294

boosting freeze-in by 
(inverse) cannibalization etc.
see e.g. Bernal 2005.08988

DM connected to SM through 
mediator that undergoes freeze-in

possible, but typically more 
suppressed and UV sensitive

stage, however the number changing processes are suppressed by a further factor of
λ2 and chemical equilibrium never sets in.

Note that integrating out the inflaton leads to a tiny Higgs–DM coupling of order
(λφS/8π2)σ2/m2

φ. At sufficiently small σ, it is irrelevant to both thermalization and
freeze–in production of dark matter [3], making the effect emphasised in Ref. [18]
negligible.

This example illustrates that dark matter and observed matter can be produced
by very different mechanisms, in which case one expects different temperatures in the
two sectors. Furthermore, the dark sector can be endowed with effective chemical
potential, as long as the number changing interactions are inefficient.

3 Boltzmann equation and reaction rates

The particle density n(t) evolution is described by the Boltzmann equation. In addition
to the Universe expansion, n(t) is affected by the particle number changing processes
such as SS ↔ SSSS (Fig. 1) and those of higher order. Keeping the lowest order
terms, the Boltzmann equation in the FRW background reads (see e.g. [12, 22])

dn

dt
+ 3Hn = 2 (Γ2→4 − Γ4→2) , (14)

where H = ȧ/a, the factor of 2 comes from the particle number change in the

Figure 1: Lowest order number changing processes.

scattering process and the reaction rates per unit volume are

Γa→b =

∫

(

∏

i∈a

d3pi

(2π)32Ei
f(pi)

) (

∏

j∈b

d3pj

(2π)32Ej
(1 + f(pj))

)

|Ma→b|2 (2π)4δ4(pa−pb).

(15)
Here Ma→b is the QFT transition amplitude, in which we also absorb the initial and
final state symmetry factors; f(p) is the momentum distribution function. It can
deviate from the corresponding thermal distribution, yet as long as the system enjoys
kinetic equilibrium through efficient 2 → 2 scattering, f(p) takes the form [20],[22]

f(p) =
1

exp
E−µ
T −1

, (16)

5
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YOU CAN’T LOOK 
FOR FREEZE-IN 

DARK MATTER IN 
DIRECT & 
INDIRECT 

DETECTION
YOU CAN’T 

LOOK FOR FREEZE-
IN DARK MATTER 

IN DIRECT & 
INDIRECT 

DETECTION

Th
e 
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…are we sure 
about that one

?!

https://en.wikipedia.org/wiki/en:Menhir
https://en.wikipedia.org/wiki/en:Menhir
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HOW ABOUT SEMI-PRODUCTION?

What is different (from the decay/pair-annihilation freeze-in)? 

• The production rate is proportional to the DM density. 
(Smaller initial abundance → larger cross section…)

• Semi-production modifies the energy of DM particles in a 
non-trivial way, so the temperature evolution can affect the 
relic density

χϕ → χχ
Consider process of production that is the inverse of semi-annihilation:

DM mediator or a SM state

AH, Laletin 2104.05684
(see also Bringmann et al. 2103.16572)



20

EXAMPLE TOY MODEL

A. Assume that  is in equilibrium with SM and for now simply 
take  to have some tiny initial abundance (e.g. from reheating or 
UV pair production)

B. For now also neglect any other potential interaction terms in 
the Lagrangian

ϕ
χ

Z3 symmetry

We start the investigation with a simple two-scalar toy model:

DM
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TOY MODEL RESULTS

• Semi-production requires 
much larger cross sections 
than pair-production

• If  is out of equilibrium, 
even larger cross sections 
are possible

• For now we assumed that 
the temperature of  is 
known

ϕ

χ

 that give correct σv Ωh2

  can be quite relevant!Tχ
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SYSTEM OF BES FOR  AND Yχ Tχ

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)
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Vector bosons:

vrel�VV =
�
2
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�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
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2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)
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2

This we obtain through equations for the 0th and 2nd moment of the BE: 

where is a parameter that describes

the DM temperature

The collision term is also given by its moments:

Now, there is a technical difficulty for semi-annihilation…

the collision term contains term ∝ fχ(Tχ)fϕ(T )

and the distribution functions break LI… so one needs to work in plasma frame}
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REALISTIC MODEL

• We now consider a more detailed example model, where  is a 
scalar singlet coupled to the Higgs doublet

•  gets a VEV, but  doesn’t

•                     → no decays

ϕ

ϕ χ

mϕ < 3mχ

semi-production pair-production

Higgs portal interactions
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EVOLUTION

co-moving number density ’temperature’

The full calculation compared to one assuming  
can differ by more than order of magnitude!

Tχ = T
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INDIRECT DETECTION

• The results of the scan in the 
parameter space for the DM 
production dominated by the 
semi-annihilation processes. 

• The coloured squares indicate 
the points, which are within the 
reach of the future searches for 
the mediator  and the empty 
ones are beyond these prospects.

• The points above the grey dot-
dashed line can potentially 
explain the core formation in 
dSph [1803.09762]

ϕ
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LABORATORY SEARCHES

• The constraints on the 
properties of the mediator 

 and the prospects for its 
detection. 

• The blue points correspond 
to the DM production 
dominated by the semi-
annihilation, while the  
green ones – by the  
pair-annihilation.

ϕ
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Above we assumed that  can be different than SM bath  but still:
 
Tχ T
fχ(p) ∝ f eq(p, Tχ)
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Figure 2: Preliminary results for the case of a decaying heavier state with a mass of 3mDM and
a somewhat larger abundance from its own freeze-out. Left: the snapshots of the evolution of
the fDM(p) normalized to show the change in shape only. Right: corresponding result for the
yield compared to the case where there is no � decay happening (dashed) and the equilibrium
values for � and the dark matter �. In both panels the three di↵erent colors show variation
of the results when changing the rate of the elastic scatterings with the SM plasma.

the value xKD = mDM/TKD, where TKD is an approximate temperature of kinetic decoupling.
More specifically, the momentum transfer rate divided over the Hubble rate is assumed in
this example to have the form �(x)/H(x) = (xKD/x)4. The plot shows how thermalization
happens under the influence of two competing processes. The three exemplified cases have
quite distinct evolution:

a) the case of extremely e�cient elastic scatterings (blue) does not exhibit a pronounced
second peak as the thermalization is very quick

b) the case with very early kinetic decoupling (orange) results in fDM(p) that is dominated
by the component from a decay

c) and finally the intermediate case (green) has a mixed, non-thermal shape.

What is worth stressing is that the simplicity of this example model is chosen not only for
clarity of illustration, but also due to numerical limitations of the current development branch
of DRAKE, which the project aims to overcome.

In the right panel of the same figure the corresponding evolution of the yield Y , i.e. the
ratio of the DM number density to the entropy density of the SM bath, is shown for these
three cases. One can see a large change between them which is due to the impact of the shape
of the distribution on the e�ciency of the annihilation. In this model it was assumed that the
annihilation cross section is inversely proportional to the DM velocity (as occurs e.g. in the
cases of the Sommerfeld enhanced annihilation). It follows that the more skewed to higher
momenta the distribution is the weaker the annihilation becomes, explaining the result for the
evolution of Y . In summary, even in such a relatively simple setup the corresponding change
in the relic density reaches factor O(1).

It is clear however that this need not to be the case, especially in freeze-in where 
typically there is no efficient equilibration see e.g.: Belanger et al. 2005.06294

     Du et al. 2111.01267

Work in progress: freeze-in module for

https://drake.hepforge.org
[written in Wolfram Language, lightweight, modular 
and simple to use code for calculating relic abundance]

preliminary

Binder, Bringmann, AH, Gustafsson 2103.01944

DM having second component from a decay:

elastic scatterings: 
efficient, 
medium, 

weak

https://drake.hepforge.org
https://drake.hepforge.org


28

CONCLUSIONS

Thank you!

1. Freeze-in is a well motivated Dark Matter production mechanism. 
In recent years some interesting developments took place, opening 
new questions and possibilities.

2. DM produced via freeze-in can lead to detectable signals in 
indirect searches.

3. Temperature (and momentum distribution) can have a non-trivial 
impact in such scenarios and a lot left to be studied in this topic.


