

DEVELOPMENTS IN DARK MATTER RELIC ABUNDANCE CALCULATIONS

Andrzej Hryczuk

based on:

T. Binder, T. Bringmann, M. Gustafsson & A.H. <u>1706.07433</u>, <u>2103.01944</u> **A.H. & M. Laletin** 2204.xxxxx

IMSc, Chennai, India (online)

andrzej.hryczuk@ncbj.gov.pl

DARK MATTER ORIGIN

MOTIVATION Thermal Relic Density

Theory:

I. Natural

Comes out automatically from the expansion of the Universe

Naturally leads to cold DM

II. Predictive

No dependence on initial conditions Fixes coupling(s) \Rightarrow signal in DD, ID & LHC

III. It is not optional

Overabundance constraint

To avoid it one needs quite significant deviations from standard cosmology

Experiment:

... as a constraint:

...as a target:

"(...) besides the Higgs boson mass measurement and LHC direct bounds, the constraint showing **by far the strongest impact** on the parameter space of the MSSM is the **relic density**"

Roszkowski et al.'14

...as a þin:

When a dark matter signal is (finally) found: relic abundance can pin-point the particle physics interpretation

THERMAL RELIC DENSITY STANDARD SCENARIO

time evolution of $f_{\chi}(p)$ in kinetic theory:

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) \boldsymbol{f}_{\chi} = \mathcal{C}[\boldsymbol{f}_{\chi}]$$

Liouville operator in FRW background

the collision term

THERMAL RELIC DENSITY STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$: *assumptions for using Boltzmann eq: $E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$ classical limit, molecular chaos,... ... for derivation from thermal OFT see e.g., 1409.3049 integrate over p (i.e. take 0th moment) $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel} \rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq} \right)$ where the thermally averaged cross section: 0.01 $\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3\vec{p}_{\chi}}{(2\pi)^3} \frac{d^3\vec{p}_{\bar{\chi}}}{(2\pi)^3} \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$ 0.001 0.0001 10increasing $\langle \sigma v \rangle$ Density 10-10-10-10-10 10-10 10-11 10-11 10-12 Comoving **Critical assumption:** kinetic equilibrium at chemical decoupling 10-1 10⁻¹ $f_{\chi} \sim a(T) f_{\chi}^{eq}$ 10-18 nveo10-1 10-80 1000 time \rightarrow x=m/T Fig.: Jungman, Kamionkowski & Griest, PR'96

HISTORICAL PRELUDE THREE EXCEPTIONS Griest & Seckel '91

1. Co-annihilations

if more than one state share a conserved quantum number making DM stable

$$\langle \sigma_{\text{eff}} \mathbf{v} \rangle = \sum_{ij} \langle \sigma_{ij} \mathbf{v}_{ij} \rangle \frac{n_i^{\text{eq}} n_j^{\text{eq}}}{n_{\text{eq}}^2}$$

$$\text{with: } \sigma_{ij} = \sum_X \sigma(\chi_i \chi_j \to X)$$

$$\text{e.g., SUSY}$$

2. Annihilation to forbidden channels

if DM is slightly below mass threshold for annihilation \longrightarrow "accessible in thermal bath

recent e.g., 1505.07107

3. Annihilation near poles

expansion in velocity (s-wave, p-wave, etc.) not safe

(more historical issue: these days most people use numerical codes)

THERMAL RELIC DENSITY MODERN "EXCEPTIONS"

1. Non-standard cosmology

many works... very recent e.g., D'Eramo, Fernandez, Profumo '17

2. Bound State Formation

recent e.g., Petraki at al. '15, '16; An et al. '15, '16; Cirelli et al. '16; ...

3. $3 \rightarrow 2$ and $4 \rightarrow 2$ annihilation

e.g., D'Agnolo, Ruderman '15; Cline at al. '17; Choi at al. '17; ...

4. Second era of annihilation

Feng et al. '10; Bringmann et al. '12; ...

5. Semi-annihilation

D'Eramo, Thaler '10; ...

6. Cannibalization

e.g., Kuflik et al. '15; Pappadopulo et al. '16; ...

7. ...

... in other words: whenever studying non-minimal scenarios "exceptions" appear

WHAT IF A NON-MINIMAL SCENARIO?

In a minimal WIMP case <u>only two</u> types of processes are relevant:

WHAT IF A NON-MINIMAL SCENARIO?

needed to be efficient for mechanism to work
 drives the freeze-out (i.e. first efficient, then stops)
 assumed in computation

WHAT IF NON-MINIMAL SCENARIO?

Example: assume two particles in the dark sector: A and B

scenario process	Co-2mihilation	superwith	Cordecaying	Conversion-driven	Cannibal/Sernir Cannibal/Sernir	Forbidden-like	
annihilation A A <-> SM SM A B <-> SM SM B B <-> SM SM	first efficient then stops						
conversion A A <-> B B inelastic scattering A SM <-> B SM	has to be extremely efficient				****		
elastic scattering A SM <-> A SM B SM <-> B SM	assumed to be <u>very</u> efficient						in all scenarios kinetic equilibrium
el. self-scattering A A <-> A A B B <-> B B							but not always "automatic"!
decays A <-> B SM A <-> SM SM B <-> SM SM							
semi-ann/3->2 A A A <-> A A A A <-> A B A A A <-> SM A							10

FREEZE-OUT VS. DECOUPLING

Boltzmann suppression of DM vs. SM

(elastic) scattering

 $\sum_{\text{spins}} \left| \mathcal{M}^{\text{scatt}} \right|^2 = F(k, -k', p', -p)$

scatterings typically more frequent

dark matter frozen-out but <u>typically</u> still kinetically coupled to the plasma Schmid, Schwarz, Widern '99; Green, Hofmann, Schwarz '05

Recall: in *standard* thermal relic density calculation:

Critical assumption:

 \Rightarrow

kinetic equilibrium at chemical decoupling

 $f_{\chi} \sim a(\mu) f_{\chi}^{\rm eq}$

EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation i.e. rates around freeze-out: $H \sim \Gamma_{ann} \gtrsim \Gamma_{el}$

Possibilities:

B) Boltzmann suppression of SM as strong as for DM

e.g., below threshold annihilation (forbidden-like DM)

C) Scatterings and annihilation have different structure

e.g., semi-annihilation, 3 to 2 models,...

D) Multi-component dark sectors

e.g., additional sources of DM from late decays, ...

How to go beyond kinetic equilibrium?

All information is in the full BE:

both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$

contains both scatterings and annihilations

KINETIC DECOUPLING 101

DM temperature Definition:

First take consider only temperature evolution - then 2nd moment of full BE (up to terms p^2/m_{χ}^2) gives:

$$\frac{y'}{y} = -\frac{Y'}{Y} \left(1 - \frac{\langle \sigma v_{\rm rel} \rangle_2}{\langle \sigma v_{\rm rel} \rangle}\right) - \left(1 - \frac{x}{3} \frac{g'_{\rm *S}}{g_{\rm *S}}\right) \frac{2m_{\chi} c(T)}{Hx} \left(1 - \frac{y_{\rm eq}}{y}\right)$$

where:

$$\langle \sigma v_{\rm rel} \rangle_2 \equiv \frac{g_{\chi}^2}{3T m_{\chi} n_{\chi}^2} \int \frac{d^3 p}{(2\pi)^3} \int \frac{d^3 \tilde{p}}{(2\pi)^3} p^2 v_{\rm rel} \sigma_{\bar{\chi}\chi \to \bar{\chi}X} f(E) f(\tilde{E}) \xrightarrow[+]{k} 3.5 \\ \text{impact of annihilation} \\ c(T) = \frac{1}{12(2\pi)^3 m_{\chi}^4 T} \sum_X \int dk \, k^5 \omega^{-1} g^{\pm} (1 \mp g^{\pm}) \int_{-4k^2}^0 (-t) \frac{1}{8k^4} |\mathcal{M}_{\rm el}|^2 \xrightarrow[+]{k} 3.0 \\ \text{impact of elastic} \\ \text{scatterings} \xrightarrow{5} 0 \\ \text{$$

ONE STEP FURTHER...

Now consider general KD scenario, i.e. coupled temperature and number density evolution:

<u>These equations still assume the equilibrium shape of $f_{\chi}(p)$ — but with variant temperature</u>

or more accurately: that the thermal averages computed with true nonequilibrium distributions don't differ much from the above ones

NUMERICAL APPROACH

... or one can just solve full phase space Boltzmann eq.

NEW TOOL! GOING <u>BEYOND</u> THE STANDARD APPROACH

- Home
- Downloads
- Contact

Applications:

DM relic density for any (user defined) model*

Dark matter Relic Abundance beyond Kinetic Equilibrium

Authors: Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk

DRAKE is a numerical precision tool for predicting the dark matter relic abundance also in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. The code comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution. The code is written in Wolfram Language and includes a Mathematica notebook example program, a template script for terminal usage with the free Wolfram Engine, as well as several concrete example models. DRAKE is a free software licensed under GPL3.

If you use DRAKE for your scientific publications, please cite

 DRAKE: Dark matter Relic Abundance beyond Kinetic Equilibrium, Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk, [arXiv:2103.01944]

Currently, an user guide can be found in the Appendix A of this reference. Please cite also quoted other works applying for specific cases.

v1.0 « Click here to download DRAKE

(March 3, 2021)

<u>https://drake.hepforge.org</u>

Interplay between chemical and kinetic decoupling

Prediction for the DM phase space distribution

Late kinetic decoupling and impact on cosmology

. .

see e.g., 1202.5456

(only) prerequisite: Wolfram Language (or Mathematica)

*at the moment for a single DM species and w/o co-annihlations... but stay tuned for extensions!

Few words about the Code

written in Wolfram Language, lightweight, modular and simple to use both via script and front end usage

I. Load DRAKE

Needs["DRAKE`"]

2. Initialize model

GetModel["WIMP", "bm1", "settings_bm1"]
------ Model: WIMP-like toy model -----{----- card: bm1 mDM=100. gDM=1 sv0=1.6877e-9 xkd=25.------}

<u>3. Run</u>

nBE

cBE

PrepANN; nBE Oh2nBE = 0.12

```
If[!scatttype == "gamma(x)" && ! FullCel, PrepSCATT];
(* PrepANN; *) (* uncomment if not called earlier *)
PrepANN2;
cBE
```

Oh2cBE = 0.120013

PrepANNtheta; RegArrayGen[tsvtheta];

fBE

fBE

Oh2fBE = 0.120037

SNAPSHOTS FROM AN EXAMPLE NOTEBOOK

4. Print plots

(* Print out result plots *)
MakePlots

Example A: Scalar Singlet DM

EXAMPLE A Scalar Singlet DM

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

$$\mathcal{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} \mu_{S}^{2} S^{2} - \frac{1}{2} \lambda_{s} S^{2} |H|^{2} \qquad \qquad m_{s} = \sqrt{\mu_{S}^{2} + \frac{1}{2} \lambda_{s} v_{0}^{2}}$$

Most of the parameter space excluded, but... even such a simple model is hard to kill best fit point hides in the resonance region!

SCALAR SINGLET DM ANNIHILATION VS. SCATTERINGS

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

Freeze-out at few GeV \rightarrow what is the <u>abundance of heavy quarks</u> in QCD plasma? QCD = A - all quarks are free and present in the plasma down to T_c = 154 MeV two scenarios: QCD = B - only light quarks contribute to scattering and only down to 4T_c 22

[... Freeze-out at few GeV \rightarrow what is the <u>abundance of heavy quarks</u> in QCD plasma?

two scenarios: QCD = A - all quarks are free and present in the plasma down to $T_c = 154 \text{ MeV}$ QCD = B - only light quarks contribute to scattering and only down to $4T_c$...]

23

FULL PHASE-SPACE EVOLUTION

significant deviation from equilibrium shape already around freeze-out

→ effect on relic density largest, both from different T and fDM

 $p^2 f_{eq}(x_\chi)/n_\chi$

 $p^2 f_{\chi}(x_{\chi})/n_{\chi}$

60

Уeq

60

freeze-out not far from eq. shape

effect on relic density

~only from different T

80

100

80

GENERIC RESONANT ANNIHILATION Example effect of early KD on relic density

CBE vs. FBE which is more accurate?!

Which limit is closer to reality <u>depends on the model</u>, but (from what we looked at) it seems that fBE is typically more accurate, unless self-scattering is tuned up, e.g.

Example B: Forbidden DM

B) Boltzmann suppression of SM as strong as for DM

EXAMPLE **B** FORBIDDEN DARK MATTER

DM is a thermal relic that annihilates <u>only</u> to heavier states (forbidden in zero temperature)

kinetic and chemical decoupling close

100

10

0.10

0.01

 ψ

 $\bar{\psi}$ /

 $m_{\psi} < m_{\gamma_d}$

FORBIDDEN DARK MATTER Example effect of early KD on relic density

EXAMPLE C: SEMI-ANNIHILATION

C) Scatterings and annihilation have different structure

DARK MATTER SEMI-ANNIHILATION AND ITS SIMPLEST REALIZATION

DM is a thermal relic but with freeze-out governed by the semi-annihilation process

D'Eramo, Thaler '10; ...

Z₃ complex scalar singlet: $V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 |S|^2 + \lambda_S |S|^4 + \lambda_{SH} |S|^2 |H|^2 + \frac{\mu_3}{2} (S^3 + S^{\dagger 3}).$

just above the Higgs threshold semi-annihilation dominant! Belanger, Kannike, Pukhov, Raidal '13

SEMI-ANNIHILATION Example effect on early KD on relic density

<u>Note</u>: here the final effect is relatively mild (though still larger than the observational error), but only because in the simplest model the velocity dependence of annihilation is mild as well...

Example D: When additional influx of DM arrives

D) Multi-component dark sectors

Sudden injection of more DM particles distorts $f_{\chi}(p)$ (e.g. from a decay or annihilation of other states)

- this can modify the annihilation rate (if still active)

- how does the thermalization due to elastic scatterings happen?

EXAMPLE EVOLUTION

WHY DOES <u>INJECTING MORE</u> DM PARTICLES CAN LEAD TO <u>DECREASE</u> OF THE RELIC ABUNDANCE?

Let's look on the annihilation rate for different cases:

SUMMARY

I. Kinetic equilibrium is a <u>necessary</u> (often implicit) assumption for <u>standard</u> relic density calculations in all the numerical tools... ...while it is not always warranted!

2. Introduced coupled system of Boltzmann eqs. for 0th and 2nd moments (cBE) allows for much more <u>accurate</u> treatment while the full phase space Boltzmann equation (fBE) can be also successfully solved for higher precision and/or to obtain result for $f_{DM}(p)$

3. Introduced **DRAKES**: a <u>new tool</u> to extend the current capabilities to the regimes beyond kinetic equilibrium

4. Future developments and applications: new processes (e.g., freeze-in, semi-annihilations), imprint on power spectrum, ...