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I. Natural

II. Predictive

III. It is not optional
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MOTIVATION 
THERMAL RELIC DENSITY 

When a dark matter signal is (finally) found: 
relic abundance can pin-point the 

particle physics interpretation

Experiment: Theory:
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”(…) besides the Higgs boson 
mass measurement and LHC 
direct bounds, the constraint 
showing by far the strongest 
impact on the parameter space 
of the MSSM is the relic 
density”

…as a constraint:

…as a target:

…as a pin:

Roszkowski et al. ’14

Fixes coupling(s)      signal in DD, ID & LHC

No dependence on initial conditions

To avoid it one needs quite significant 
deviations from standard cosmology

Overabundance constraint

Comes out automatically from the 
expansion of the Universe

)

Naturally leads to cold DM
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time evolution of         in kinetic theory: 

freeze-out 

DM in full equilibrium

chemical decoupling
timeT

no
n-

eq
uil

ibr
ium

f�(p)

E (@t �H~p ·r~p) f� = C[f�]
the collision termLiouville operator in 

FRW background

kinetic decouplingΓscatt ∼ H
Γann < H

Γann ∼ H

Γann > H

THERMAL RELIC DENSITY  
STANDARD SCENARIO

(chemical and kinetic)



THERMAL RELIC DENSITY  
STANDARD APPROACH
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*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

Critical assumption: 
kinetic equilibrium at chemical decoupling

E (@t �H~p ·r~p) f� = C[f�])

where the thermally averaged cross section:

h���̄!ijvrelieq = �
h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄

Boltzmann equation for        :

integrate over p 
(i.e. take 0th moment)

f�(p)

)

fχ ∼ a(T ) f eq
χ



HISTORICAL PRELUDE 
THREE EXCEPTIONS
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1. Co-annihilations

2. Annihilation to forbidden channels

3. Annihilation near poles

⟨σeffv⟩ =
∑

ij

⟨σijvij⟩
n
eq
i n

eq
j

n
2
eq

σij =
∑

X

σ(χiχj → X)with:

if more than one state share a 
conserved quantum number 

making DM stable

if DM is slightly below mass 
threshold for annihilation 

e.g., SUSY

recent e.g., 1505.07107

„forbidden” channel can still be 
accessible in thermal bath)

Griest & Seckel ’91

expansion in velocity 
(s-wave, p-wave, etc.) not safe (more historical issue: 

these days most people 
use numerical codes)



THERMAL RELIC DENSITY  
MODERN ”EXCEPTIONS”
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1. Non-standard cosmology

2. Bound State Formation

3. 3      2 and 4      2 annihilation

4. Second era of annihilation

5. Semi-annihilation

6. Cannibalization

7. …

…in other words: whenever studying non-minimal scenarios ”exceptions” appear

recent e.g., Petraki at al. ’15, ’16;   An et al. ’15, ’16;   Cirelli et al. ’16; …

e.g., D’Agnolo, Ruderman ’15;   Cline at al. ’17;  Choi at al. ’17;  …

D’Eramo, Thaler ’10; …

Feng et al. ’10;   Bringmann et al. ’12; … 

many works… very recent e.g., D’Eramo, Fernandez, Profumo ’17

e.g., Kuflik et al. ’15;   Pappadopulo et al. ’16; … 



WHAT IF A NON-MINIMAL SCENARIO?
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DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

In a minimal WIMP case only two types of processes are relevant:

drives number density evolution assumed to be very efficient 
(keeping the distribution to be in local thermal eq.)



WHAT IF A NON-MINIMAL SCENARIO?
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+…..

typically 
forbidden by 
symmetry

or

Co-annihilation
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Griest, Seckel ’91

needed to be efficient for mechanism to work

drives the freeze-out (i.e. first efficient, then stops)

assumed in computation

due to efficient conversion processes one can 
trace only number density of sum of the states 
with shared conserved quantum number using 

weighted annihilation cross section



WHAT IF NON-MINIMAL SCENARIO?
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annihilation

…

A A <-> SM SM
A B <-> SM SM
B B <-> SM SM

conversion
A A <-> B B

A SM <-> B SM

A SM <-> A SM
B SM <-> B SM

elastic scattering

el. self-scattering

decays

semi-ann/3->2

inelastic scattering

A A <-> A A
B B <-> B B

A <-> B SM
A <-> SM SM
B <-> SM SM

A A A <-> A A
A A <-> A B

A A A <-> SM A

first efficient 
then stops

has to be 
extremely 
efficient 

assumed to 
be very

 efficient

in all scenarios 
kinetic 

equilibrium 
assumption crucial, 

but not always 
”automatic”!

Example: assume two particles in the dark sector:  A and B

scenarioprocess



FREEZE-OUT VS. DECOUPLING

DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

where t = q̃2 = (k − k′)2, and after summing over all the spins we get

∑

spins

∣

∣Mscatt
∣

∣

2
=

e4

t2
× tr

(

(̸k′ +me)γ
ν (̸k +me)γ

λ
)

× tr
(

(̸p′ +Mµ)γν (̸p +Mµ)γλ
)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
(

(̸k′ +me)γ
ν (̸k +me)γ

λ
)scatt

↔ − tr
(

(̸p2 −me)γ
ν (̸p1 +me)γ

λ
)pair

,

tr
(

(̸p′ +Mµ)γν (̸p+Mµ)γλ
)scatt

↔ − tr
(

(̸p′1 +Mµ)γν (̸p
′

2 −Mµ)γλ
)pair

,

(8)

and hence
∑

spins

∣

∣Mscatt
∣

∣

2
↔

∑

spins

∣

∣Mpair
∣

∣

2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,

∑

spins

∣

∣Mpair
∣

∣

2
= F (p1, p2, p

′

1, p
′

2) and
∑

spins

∣

∣Mscatt
∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just

2
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crossing sym.

~

dark matter frozen-out but typically 
still kinetically coupled to the plasma

Boltzmann suppression of DM vs. SM scatterings typically more frequent)

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05
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Recall: in standard thermal relic density calculation:

Critical assumption: 
kinetic equilibrium at chemical decoupling

f� ⇠ a(µ)f eq
�



EARLY KINETIC DECOUPLING?
A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

12
D)    Multi-component dark sectors

e.g., additional sources of DM from late decays, …
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HOW TO GO BEYOND KINETIC EQUILIBRIUM?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilations

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in the full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution
no constraining assumptions

numerically challenging
often an overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically
manifestly captures all of the relevant physics

finite range of validity
no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:
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2
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3
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f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3
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log

m
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#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

y ⌘ m�T�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T� ⌘ g�

3m�n�

Z
d
3
p

(2⇡)3
p
2
f�(p) (24)

2

…fB
E cBE
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KINETIC DECOUPLING 101

h�vreli2 ⌘
g
2
�

3Tm�n
2
�

Z
d
3
p

(2⇡)3

Z
d
3
p̃

(2⇡)3
p
2
vrel��̄�!X̄Xf(E)f(Ẽ)

h�vreli2 ⌘
g
2
�

3Tm�n
2
�

Z
d
3
p

(2⇡)3

Z
d
3
p̃

(2⇡)3
p
2
vrel��̄�!X̄Xf(E)f(Ẽ) (1)

where the equilibrium number density in the nonrelativistic regime is n
eq
� = m

3
�g�K2(x)/(2⇡

2
x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the

Boltzmann equation can be written as:

y
0

y
= �Y

0

Y

✓
1� h�vreli2

h�vreli

◆
�
✓
1� x

3

g
0
⇤S
g⇤S

◆
2m�c(T )

Hx

✓
1� yeq

y

◆
, (2)

with

c(T ) =
1

12(2⇡)3m4
�T

X

X

Z
dk k

5
!
�1

g
± �

1⌥ g
±�
Z 0

�4k2

(�t)
1

8k4
|M|2 . (3)

To summarize we get coupled equations:

Y
0

Y
= �

1� x
3
g0
⇤S

g⇤S

Hx
sY

 
h�vreli|x=m2

�/(s
2/3y) �

Y
2
eq

Y 2
h�vreli|x

!
(4)

y
0

y
= �

1� x
3
g0
⇤S

g⇤S

Hx

"
2m�c(T )

✓
1� yeq

y

◆
(5)

�sY

 ⇣
h�vreli � h�vreli2

⌘

x=m2
�/(s

2/3y)
�

Y
2
eq

Y 2

⇣
h�vreli � h�vreli2

⌘

x

!#
.

The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,

V =
1

2
µ
2
SS

2
+

1

2
�sS

2|H|2 . (6)

After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving

ms =

r
µ
2
S +

1

2
�sv

2
0 , (7)

where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.

�vrel =
2�

2
sv

2
0p

s
|Dh(s)|2�h(

p
s) , (8)

where

|Dh(s)|2 ⌘ 1

(s�m
2
h)

2 +m
2
h�

2
h(mh)

. (9)

• For ms < mh/2, the width in the propagator Dh(s) must be increased by the invisible contribution �inv

due to h ! SS:

�inv =
�
2
sv

2
0

32⇡mh

�
1� 4m

2
s/m

2
h

�1/2
, (10)

• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign

w.r.t. [?], as pointed out by P. Gondolo):

vrel�hh =
�
2
s

16⇡s2vs


(a

2
R + a

2
I)svsvh

� 4�sv
2
0

✓
aR � �sv

2
0

s� 2m
2
h

◆
log

����
m

2
s � t+

m2
s � t�

����

+
2�

2
sv

4
0svsvh

(m2
s � t�)(m2

s � t+)

�
, (11)

where vi =
p
1� 4m

2
i /s, t± = m

2
s +m

2
h � 1

2s(1⌥ vsvh), and

aR ⌘ 1 + 3m
2
h(s�m

2
h)|Dh(s)|2

aI ⌘ 3m
2
h

p
s�h(mh)|Dh(s)|2. (12)

1

c(T ) =
1

12(2⇡)3m4
�T

X

X

Z
dk k

5
!
�1

g
± �

1⌥ g
±�

Z 0

�4k2

(�t)
1

8k4
|Mel|2

DM temperature 
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)
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Particle DM and small-scale structure 6
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Figure 1. The left panel shows the phaseplot and solution for the WIMP temperature

evolution, for mχ ∼ 100 GeV and |M|
2

∼ g4
Y (mχ/ω)2, expressed in the dimensionless

variables introduced in Eqs. (8, 9). At T ! Tkd, any departure from thermal
equilibrium (Tχ = T ) is restored almost immediately (except for a short period around
the QCD phase transition); for T " Tkd, the WIMPs decouple from the thermal bath
and cool down with the Hubble expansion as Tχ ∝ a−2.

In the right panel, the effective number of relativistic degrees of freedom is plotted
as a function of the temperature, implementing the results of [25] for the evolution of
this quantity during the QCD phase transition; for reference, the decoupling of muons
and electrons is also indicated.

from this behaviour (except for a short period during the QCD transition, see below,

when the rapidly changing effective number of degrees of freedom does not allow this).

In principle, the scattering with all types of SM particles contributes to c(T ), see
Eq. (A.8). This picture is a bit complicated by the fact that kinetic decoupling in some

cases can take place close to, or even above the QCD phase transition, the details of

which are not yet fully understood. Lattice calculations, however, start to converge at

a value for the critical temperature of Tc ≈ 170 MeV for the most interesting case of

two light (up and down) and one more massive (strange) quark flavour [23] and indicate

that the plasma can be described by free quarks and gluons only for T " 4Tc [24]. For
the effective number of degrees of freedom during the transition, we adopt the results

of [25] as displayed in the right panel of Fig. 1. As scattering partners are concerned,

we conservatively restrict ourselves to leptons and, for T > 4Tc, to the three lightest

quarks.

The resulting range in Tkd for neutralino dark matter, obtained after having

performed the extensive scan described in Section 2, is shown in Fig. 2 as a function of

the mass mχ and gaugino fraction Zg ≡ |N11|2 + |N12|2 (in our case dominated by the
Bino fraction). The gray band indicates the QCD phase transition; values for Tkd inside

or above this band should be interpreted as upper bounds on the decoupling temperature

since the scattering with some of the hadronic degrees of freedom was not taken into

account. On the other hand, as the coupling of WIMPs to hadrons is usually smaller

than to leptons, the difference between this upper bound and the actual value of Tkd is

not expected to be very big; note also that the scattering with bound QCD states like,
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.
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ONE STEP FURTHER…
Now consider general KD scenario, i.e. coupled temperature and number density evolution: 
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NUMERICAL APPROACH
… or one can just solve full phase space Boltzmann eq.
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1

discretization, 
~1000 steps

Solved numerically

can be extended to e.g. self-scatterings
very stiff, care needed with numerics

Note:

fully general

expanded in NR and small 
momentum transfer
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https://drake.hepforge.org

Prediction for the DM 
phase space distribution

Late kinetic decoupling 
and impact on cosmology

see e.g., 1202.5456

Interplay between chemical and 
kinetic decoupling

Applications:

DM relic density for 
any (user defined) model

*

*

at the moment for a single DM species and w/o 
co-annihlations… but stay tuned for extensions! 17

…

(only) prerequisite:  
 Wolfram Language (or Mathematica)

NEW TOOL! 
GOING BEYOND THE STANDARD APPROACH

https://drake.hepforge.org
https://drake.hepforge.org


DRAKE
Dark matter Relic Abundance beyond Kinetic Equilibrium

nBE cBE fBE

<model> <parameters> <settings>

⟨σv⟩ ⟨σv⟩2 ⟨σv⟩θγ(x)

PrepANNthetaPrepSCATTPrepANN2PrepANN

fχ(p, x),
Ωχh 2, Y(x)

⟨Cel⟩2

U
se

r 
Sp

ec
ifi

ed
Pr

ep
ar

at
io

ns
So

lv
e 

BE

Ωχh 2, Y(x), y(x) Ωχh 2, Y(x), y(x)

Ĉel

⟨σv⟩θ

input

routine call

physics result

GetModel

FullCel  
== True

Analyticsvtheta  
== True

https://drake.hepforge.org
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FEW WORDS ABOUT THE CODE

Input: model file (few models 
implemented, user extendable), 

parameter values and settings 
choices

written in Wolfram Language, lightweight, modular 
and simple to use both via script and front end usage

Preparation phase: all needed 
thermal averages etc.

Final phase: tailored solvers 
for Boltzmann eq. 

(intermediate) results for rates

[slowest part (~ few sec - some min), 
can be bypassed by user own 

routines/results…]

(final) results for Ωh2, fDM(p)

[~ few seconds]

https://drake.hepforge.org
https://drake.hepforge.org


DRAKE
Dark matter Relic Abundance beyond Kinetic Equilibrium

https://drake.hepforge.org
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SNAPSHOTS FROM 
AN EXAMPLE NOTEBOOK

(* Load DRAKE *)

Needs["DRAKE`"]
(* Note: if changes done to the source of the package to reload use instead

<<DRAKE`
*)

1. Load DRAKE

2. Initialize model

3. Run

fBE

cBE

nBE

4. Print plots

https://drake.hepforge.org
https://drake.hepforge.org


EXAMPLE A:
SCALAR SINGLET DM
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EXAMPLE A 
SCALAR SINGLET DM
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where the equilibrium number density in the nonrelativistic regime is n
eq
� = m
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�g�K2(x)/(2⇡

2
x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄

2
hS

-dependence of ‡SI and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄

≠2
hS

, owing to its de-
pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].

Most of the parameter space excluded, but… even such a simple model is hard to kill

best fit point hides in the resonance region!
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With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.
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• For ms > mh, eq. (18) must be supplemented by the extra contribution from SS ! hh (corrected sign
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SCALAR SINGLET DM 
ANNIHILATION VS. SCATTERINGS
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Annihilation 
processes:

El. scattering 
processes:

resonant non-resonant

with:

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons
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Freeze-out at few GeV        what is the abundance of heavy quarks in QCD plasma?

 two scenarios:
QCD = A - all quarks are free and present in the plasma down to Tc =154 MeV

QCD = B - only light quarks contribute to scattering and only down to 4Tc 22
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RESULTS
EFFECT ON THE Ωh2

effect on relic density: 
up to O(~10)

[… Freeze-out at few GeV        what is the abundance of heavy quarks in QCD plasma?

 two scenarios: QCD = A - all quarks are free and present in the plasma down to Tc =154 MeV
QCD = B - only light quarks contribute to scattering and only down to 4Tc …]
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FULL PHASE-SPACE EVOLUTION

significant deviation from equilibrium 
shape already around freeze-out

effect on relic density largest, 
both from different T and fDM

large deviations at later times, around 
freeze-out not far from eq. shape

effect on relic density 
~only from different T

black - 
equilibrium 

at TDM

blue - full 
solution for 
fDM at TDM

mDM = 58 GeV mDM = 62.5 GeV

24
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GENERIC RESONANT ANNIHILATION
EXAMPLE EFFECT OF EARLY KD ON RELIC DENSITY

can reach O(10%) 
even for Z-like 
resonance

very large effect for 
Higgs-like resonance
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(Ωh2)fBE / (Ωh2)nBE

0.1 1 25

1
1.02

1.1

1.2

1.5

2

4

10

25

1.5

10-1 10-2 10-3 10-4

10-1

10-2

10-3

10-4

10-5

10-6

-δ

γ
=
Γ/

m
A

Z0
width

SM Higgs width

0.98

0.95

0.8

0.6

0.4

0.2

0.1

10-110-210-310-4

10-1

10-2

10-3

10-4

10-5

10-6

δ

γ
=
Γ/

m
A

(Ωh2)fBE / (Ωh2)nBE

0.1 1 25

1
1.02

1.1

1.2

1.5

2

4

10

25

1.5

10-1 10-2 10-3 10-4

10-1

10-2

10-3

10-4

10-5

10-6

-δ

γ
=

Γ/
m

A

Z0
width

SM Higgs width

0.98

0.95

0.8

0.6

0.4

0.2

0.1

10-110-210-310-4

10-1

10-2

10-3

10-4

10-5

10-6

δ

γ
=

Γ/
m

A



26

CBE VS. FBE
WHICH IS MORE ACCURATE?!

Which limit is closer to reality depends on the model, but (from what we looked at) 
it seems that fBE is typically more accurate, unless self-scattering is tuned up, e.g:

nBE cBE fBE

10-3 3×10-3 10-2 3×10-2
0.0

0.1

0.2

0.3

0.4
fBE gχ=0

4.56 4.87 4.94 4.96

They correspond to the opposite 
limits of self-interaction strengths:

very efficient - cBE

inefficient - fBE

coupling to mediator; 
governs self-scatterings

black line gives the 
result including self-
scattering processes!
(being between pure 
fBE and cBE)



EXAMPLE B:
FORBIDDEN DM

27

B)    Boltzmann suppression of SM as strong as for DM
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EXAMPLE B
FORBIDDEN DARK MATTER

DM is a thermal relic that annihilates only to heavier states 
(forbidden in zero temperature)

�ann/H

�/H

1

�ann/H

�/H

1

kinetic and chemical 
decoupling close

Annihilation 
threshold

velocity 
dependence

”heavy” SM 
particle

scattering 
rate low

…, D’Agnolo, Ruderman ’15, …
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1) forbidden annihilations:

2) self-interactions: 4) direct detection:

3) indirect detection:
m < m�d
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Forbidden Relic Density
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FIG. 1. The left panel contains Feynman diagrams relevant for (1) the relic density, (2) self-interactions, (3) indirect detection,
and (4) direct detection. The right panel shows the relic density, ⌦ h

2, as a function of the mass splitting � ⌘ (m�d �m )/m .
The red (blue) curves correspond to m = 1 GeV (MeV) and the solid (dashed) curves correspond to ↵d = 0.1 (10�3).

Relic Density: The relic density of Forbidden DM is
determined by the solution of its Boltzmann equation,

ṅ + 3Hn = �
⌦
�  ̄ v

↵
n

2
 + h��d�d vi (neq

�d
)2, (2)

where n ,�d are the number densities, H is the Hubble
parameter, h�  ̄(�d�d) vi denotes the thermally averaged
(inverse-)annihilations, and we have assumed that �d re-
mains in equilibrium during freeze-out. The solution is
approximately given by Eq. (1), with the annihilation
rate given by

⌦
�  ̄ v

↵
. For simplicity, Eq. (1) neglects

the dependence on the number of relativistic degrees of
freedom and the freeze-out temperature. These e↵ects
are included in our numerical results (for a more precise
analytic treatment see Refs. [1, 23]).

We now introduce a new and simple prescription for
computing the thermal average of the forbidden annihi-
lation rate. Detailed balance states that the right-hand
side of Eq. (2) vanishes in equilibrium, n = n

eq
 . There-

fore, the forbidden annihilation rate is related to the rate
of the inverse process, which proceeds at 0 temperature,
h��d�d vi ⇠ ↵

2
d/m

2
�d

. We find,

⌦
�  ̄ v

↵
=

(neq
�d

)2

(neq
 )2

h��d�d vi ⇡ 8⇡f�
↵

2
d

m
2
 

e
�2�x

, (3)

where � ⌘ (m�d � m )/m is the rela-
tive mass splitting, x ⌘ m /T , and f� ⌘�
�3/2(2 + �)3/2(2 + �(2 + �)

�
/(1 + �)4. The ex-

ponential suppression comes from the form of the
equilibrium number density for non-relativistic species,
neq = g(mT/2⇡)3/2 exp(�m/T ), where g = 2 (3) for
 (�d), and we have assumed zero chemical potential.
Note that the approximation of the forbidden cross sec-
tion in Ref. [8] has an incorrect exponential dependence
on �x.

We obtain the forbidden relic density by plugging
Eq. (3) into Eq. (1) and integrating the cross section

from freeze-out to the present in order to account for
annihilations after freeze-out (see for example Ref. [23]),

⌦ h
2
⇡ 0.1 g�(xf )

m
2
 /↵

2
d

(20 TeV)2
e
2�xf , (4)

where xf ⌘ m /Tf ⇠ 10 � 25 and g�(xf ) ⌘

(4⇡f�)�1(1 � 2�xfe
2�xf

R 1
2�xf

t
�1

e
�t

dt)�1 is an O(1)

function. Note that we indicate with ⌦ h
2 the total relic

density of  and  ̄. Eq. (4) shows that the forbidden relic
density is exponentially enhanced as � increases. Equiv-
alently, fixing the relic density to the observed value, the
DM mass is exponentially lighter than the weak scale.

We show the relic density, as a function of �, in the
right panel of Fig. 1. Our numerical results here, and
throughout this letter, utilize MicrOMEGASv4 [24] to solve
the Boltzmann equations and we have verified that they
agree with Eq. (4). The left of the figure, � < 0, corre-
sponds to the conventional case where the relic density is
too small for light DM masses. As we enter the forbidden
region, � > 0, the relic density exponentially increases
until it achieves the correct value. The standard lore is
that forbidden channels are only relevant in highly de-
generate scenarios, � ⌧ 1 (this was stated by Ref. [8]
which implicitly assumes weak scale DM). However, we
see from Fig. 1 that light DM calls for an O(1) splitting.

On the left side of Fig. 2, we show the value of � that
corresponds to the observed DM abundance, as a func-
tion of the DM mass. For m > 1 MeV, we assume
that the dark sector is in thermal contact with the SM,
Tdark = TSM . Lighter masses require DM to be ther-
mally decoupled and cooler, Tdark < TSM , due to con-
straints on the number of relativistic degrees of freedom
from Big Bang Nucleosynthesis (BBN) [25, 26] and the
CMB [11]. For m < 1 MeV, we adopt a decoupled dark
sector scenario, consistent with these constraints, that
we describe below. We find that DM masses down to
the keV scale are accommodated (DM with a sub-keV
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FORBIDDEN DARK MATTER
EXAMPLE EFFECT OF EARLY KD ON RELIC DENSITY

effect on relic 
density: 

up to O(~few)

below the 
threshold

above the 
threshold

(…far above the threshold 
- needs non-pert. coupling)

fBE

cBE
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full (numerical) 
scattering term

Fokker-Planck 
approx. for the 
scattering term



EXAMPLE C:
SEMI-ANNIHILATION
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C)    Scatterings and annihilation have different structure
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DARK MATTER SEMI-ANNIHILATION
AND ITS SIMPLEST REALIZATION 

see also Cai, Spray 1807.00832 

Z3 complex scalar singlet:

just above the Higgs threshold semi-annihilation dominant!
Belanger, Kannike, Pukhov, Raidal ’13

very weak 
elastic scatterings

semi-annihilation 
by itself does not 
equilibrate DM

self-heating!
but rather leads to

implications for 
ID

D’Eramo, Thaler ’10; …

DM

DM SM

DMDM is a thermal relic but with freeze-out governed 
by the semi-annihilation process

These developments are especially relevant precisely in the regions that are still allowed

by the experimental data and where the improved precision of theoretical predictions is

required for robust claims of exclusion of the whole parameter space of the thermal Z3

singlet dark matter model.

The aim of this paper is to provide a timely update of the past results [53]. While the

unitarity constraints are often computed in the limit of infinite energy, we calculate them

at finite energy with the help of the latest version [75] of the SARAH package [77–80].

We use the one-loop e↵ective potential to calculate the bounds of absolute stability and

metastability of the EW minimum from the tunnelling rate with the help of the AnyBubble

package [81].1 These constraints, in particular the one from the unitarity, put an upper

bound on the singlet cubic self-coupling and therefore on the semi-annihilation cross section.

We take into account early kinetic decoupling around the Higgs resonance and for large

semi-annihilation, and use the micrOMEGAs code [83] to calculate relic density in the

larger part of the parameter space. The micrOMEGAs is also used to compute predictions

for direct and indirect detection signals. A large part of the parameter space is already

ruled out by XENON1T [47]. Thanks to the new unitarity constraints, we manage to

further restrict the model.

We introduce the model in section 2. Various theoretical and experimental constraints

are considered in section 3. Dark matter freeze-out, the impact of early kinetic decoupling

and semi-annihilation are studied in section 4. Section 5 discusses prospects of direct and

indirect detection of dark matter. We conclude in section 6. Details of the field-dependent

masses and counter-terms for the e↵ective potential are given in the appendix A.

2 The model

The most general renormalisable scalar potential of the Higgs doublet H and the complex

singlet S, invariant under the Z3 transformation H ! H, S ! e
i2⇡/3

S, is given by

V = µ
2

H |H|2 + �H |H|4 + µ
2

S |S|2 + �S |S|4 + �SH |S|2 |H|2 + µ3

2
(S3 + S

†3). (2.1)

This is the only possible potential with this field content and symmetry. Without loss of

generality, we can take µ3 real and non-negative.

The mass of the Higgs boson is Mh = 125.09 GeV [84] and the Higgs vacuum expec-

tation value (VEV) v = 246.22 GeV. We fix the parameters

µ
2

H = �
M

2

h

2
,

�H =
1

2

M
2

h

v2
,

µ
2

S = M
2

S � �SH

v
2

2
.

(2.2)

Dark matter mass MS , the Higgs portal �SH , the singlet cubic coupling µ3 and the singlet

quartic self-coupling �S are left as free parameters.

1
The first-order phase transition from thermal tunnelling into the EW minimum can produce a measur-

able gravitational wave signal, but only in a parameter space region with DM underdensity [82].

– 3 –
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SEMI-ANNIHILATION
EXAMPLE EFFECT ON EARLY KD ON RELIC DENSITY
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*calculated with the (modified) coupled BEs method

A. Hektor, AH and K. Kannike 1901.08074
self-heating!

effect on 
relic density: 

up to O(~10%)D
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Note: here the final effect is relatively mild (though still larger than the observational error), but only because in the 
simplest model the velocity dependence of annihilation is mild as well…

http://hep-ph/1901.08074
http://hep-ph/1901.08074


EXAMPLE D:
WHEN ADDITIONAL INFLUX OF DM ARRIVES

33

D)    Multi-component dark sectors

Sudden injection of more DM particles distorts 
(e.g. from a decay or annihilation of other states)

fχ(p)

- this can modify the annihilation rate (if still active)

- how does the thermalization due to elastic scatterings happen?



DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

number
density

Y ∼ temperaturey ∼

full
w/o self-interactions

assumption of kinetic equilibrium

w/o self-interactions

full

typical approximations

momentum 
distribution

p2 f (p) ∼

EXAMPLE EVOLUTION

Preliminary!
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Γself-scatt.

nBE(T)

nBE(T
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fBE
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self-scatt.
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WHY DOES INJECTING MORE DM PARTICLES CAN 
LEAD TO DECREASE OF THE RELIC ABUNDANCE?

Let’s look on the annihilation rate for different cases:

w/o self-interactions

full

only number density 
but at modified T

only number density at 
SM plasma temperature

self-scattering rate

elastic scattering rate

Pre
lim
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ry!



SUMMARY
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1. Kinetic equilibrium is a necessary (often implicit) assumption for 
standard relic density calculations in all the numerical tools…

3. Introduced                            : a new tool to extend the 
current capabilities to the regimes beyond kinetic equilibrium

2. Introduced coupled system of Boltzmann eqs. for 0th and 2nd 
moments (cBE) allows for much more accurate treatment while the 
full phase space Boltzmann equation (fBE) can be also successfully 
solved for higher precision and/or to obtain result for fDM(p)

4. Future developments and applications:
new processes (e.g., freeze-in, semi-annihilations), imprint on power spectrum, …

…while it is not always warranted!


