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    Evidence on all scales!

DARK MATTER 
IS EVERYWHERE!

)
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…but every massive particle with not-too-weak interactions with 
the SM will be produced thermally, with relic abundance:
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Within this approximation, in a radiation dominated Universe with an adiabatic expan-
sion, it is possible to find an analytical solution, giving the freeze-out happening at [41]:
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and the relic density being equal to
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If one plugs in the numbers of a typical WIMP of a mass O 100GeV one indeed gets
xf 20 30 and the relic density:
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This is the advocated famous ”WIMP miracle”: a particle of a typical cross-section gov-
erned by weak interactions and mass on a weak scale gives correct thermal relic density.
This result should be taken however with a grain of salt. Not only it depends on several
assumptions and is related only to the simplified case without co-annihilations, but also
inspected in more detail shows that in fact the mass of the WIMP should be rather a bit
closer to a TeV scale and in concrete realizations rather fine-tuned, see e.g. [47]. This
weakens a bit the motivation of a WIMP as a manifestation of new weak scale physics.
Nevertheless, this simple computations shows why so much e↵ort is devoted to studies of
the weakly interacting massive particles.

1.4 Detection methods

The prospects for experimental searches for the dark matter very strongly relies on its
nature. If it is (nearly) decoupled from our visible SM sector we can probe it only via
gravity-strength interactions. In this case it is extremely hard to measure any of its
properties. On the other hand, if the dark matter has anything to do with the new
physics suggested by the open issues in the SM, other detection channels are possible. In
the case of a WIMP, its properties lead to possible observable scattering on the nuclei in
direct detection (DD) and additional source of cosmic rays in indirect detection (ID).

Dark matter could be created in many different ways…

It is very natural to expect that this mechanism is 
responsible for the origin of all of dark matter

…but even if not, it still is present nevertheless and it’s important to 
be able to correctly determine thermal population abundance 

3

THE ORIGIN OF DARK MATTER

Lee, Weinberg ’77; + others



HISTORICAL PRELUDE 
THREE EXCEPTIONS
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1. Co-annihilations

2. Annihilation to forbidden channels

3. Annihilation near poles

〈σeffv〉 =
∑

ij

〈σijvij〉
n
eq
i n

eq
j

n
2
eq

σij =
∑

X

σ(χiχj → X)with:

if more than one state share a 
conserved quantum number 

making DM stable

if DM is slightly below mass 
threshold for annihilation 

e.g., SUSY

recent e.g., 1505.07107

„forbidden” channel can still be 
accessible in thermal bath)

Griest & Seckel ’91

expansion in velocity 
(s-wave, p-wave, etc.) not safe (more historical issue: 

these days most people 
use numerical codes)



THERMAL RELIC DENSITY  
MODERN ”EXCEPTIONS”
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1. Non-standard cosmology

2. Bound State Formation

3. 3      2 and 4      2 annihilation

4. Second era of annihilation

5. Semi-annihilation

6. Cannibalization

7. …

In other words: whenever studying non-minimal scenarios ”exceptions” appear — 
but most of them not affect the foundations of modern calculations

recent e.g., Petraki at al. ’15, ’16;   An et al. ’15, ’16;   Cirelli et al. ’16; …

e.g., D’Agnolo, Ruderman ’15;   Cline at al. ’17;  Choi at al. ’17;  …

D’Eramo, Thaler ’10; …

Feng et al. ’10;   Bringmann et al. ’12; … 

many works… very recent e.g., D’Eramo, Fernandez, Profumo ’17

e.g., Kuflik et al. ’15;   Pappadopulo et al. ’16; … 



OUTLINE
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1. Introduction

2. Exception n

3. Exception n+1

4. Summary

• standard approach to thermal relic density

• NLO effects at finite temperature

• early kinetic decoupling with
• velocity dependent annihilation



THERMAL RELIC DENSITY  
STANDARD APPROACH
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time evolution of         in kinetic theory: 

freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling time

assumptions for using Boltzmann eq: classical limit, molecular chaos,...

)

T

no
n-e

qu
ilib

riu
m

f�(p)

E (@t �H~p ·r~p) f� = C[f�]
dn�

dt
+ 3Hn� = C

the collision term integra
tedLiouville operator in 

FRW background

(for derivation from thermal QFT… see second part of the talk)



THERMAL RELIC DENSITY  
THE COLLISION TERM
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for               CP invariant process:

where the thermally averaged cross section:

2 $ 2
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THERMAL RELIC DENSITY  
BOLTZMANN EQ.

Re-written for the comoving number density:

Recipe: 
compute annihilation cross-section, 
take a thermal bath average, 
throw it into BE… and voilà
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FREEZE-OUT VS. DECOUPLING

DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

where t = q̃2 = (k − k′)2, and after summing over all the spins we get

∑
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(#k′ +me)γ
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)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
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λ
)scatt
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(#p′1 +Mµ)γν(#p
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2 −Mµ)γλ
)pair

,

(8)
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∣

∣

2
↔

∑

spins

∣
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2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,
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2
= F (p1, p2, p

′

1, p
′

2) and
∑

spins

∣
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∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just
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crossing sym.

~

dark matter frozen-out but typically 
still kinetically coupled to the plasma

Torsten Bringmann, University of Hamburg ‒Thermal decoupling of WIMPs

Freeze-out = decoupling !

7

WIMP interactions with heat bath of SM particles:
� SM

SM SM SM�

� �

(annihilation) (scattering)

n�Boltzmann suppression of 
scattering processes much more frequent
continue even after chemical decoupling (“freeze-out”) at Tcd � m�/25

Kinetic decoupling much later:
Random walk in 
momentum space
� Ncoll � m�/T

Schmid, Schwarz, & Widerin,  PRD ’99; Green, Hofmann & Schwarz, JCAP ’05, ...

�r(Tkd) � Ncoll/�el ⇥ H�1(Tkd)

Boltzmann suppression of DM vs. SM scatterings typically more frequent)

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

f� ⇠ a(µ)f eq
�

Two consequences:

1. During freeze-out (chemical decoupling) typically:
2. If kinetic decoupling much, much later: possible impact on the matter power spectrum

i.e. kinetic decoupling can have observable consequences and affect e.g. missing satellites problem
see e.g. ,Bringmann, Ihle, Karsten, Walia ’16 10



EXCEPTION N: 
EARLY KINETIC DECOUPLING



A                 IN A NUTSHELL

12

freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling timeT

kinetic decoupling

ty
pi

ca
lly

ca
n 

it
 h

ap
pe

n?

If KD happens around CD

)

what would be the 
relic density?

how to even 
compute that?

need for refined
treatment of solving
the Boltzmann eq.

PIT FALL

f� ⇠ a(µ)f eq
�assuming kinetic equilibrium at chemical decoupling:

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq

�̄

�
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EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3
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2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

13

see also Duch, Grządkowski ’17
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HOW TO DESCRIBE KD?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilation

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution
no constraining assumptions

numerically challenging
typically overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically
manifestly captures all of the relevant physics

finite range of validity
no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:
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�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
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y ⌘ m�T�
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(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)
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H ⇠ �ann & �el (23)
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2

…
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SCATTERING
The elastic scattering collision term:

2

tion II B), and finally introduce our framework for a fully
numerical solution (Section IIC). Section III is devoted
to a thorough application of these methods to the Scalar
Singlet model. We comment on our results in Section IV,
and discuss potential other areas of application, before we
conclude in Section V. In two Appendices we discuss in
detail the evolution of the Singlet DM phase-space den-
sity for selected parameter points (App. A) and comment
on the semi-relativistic form of the scattering operator in
the Boltzmann equation (App. B).

II. THERMAL PRODUCTION OF DARK
MATTER

Let us denote the DM particle by �, and its phase-
space density by f�(t,p). The evolution of f� is gov-
erned by the Boltzmann equation which, in an expand-
ing Friedmann-Robertson-Walker universe, is given by
[17, 18]

E (@t �Hp ·rp) f� = C[f�] . (1)

Here, H = ȧ/a is the Hubble parameter, a the scale fac-
tor, and the collision term C[f�] contains all interactions
between DM and SM particles f . For WIMPs, we are
to leading order interested in two-body processes for DM
annihilation and elastic scattering, C = Cann+Cel, where

Cann =
1

2g�
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(2⇡)32!

Z
d
3
k̃
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2
�f$�f

⇥
⇥
(1⌥ g

±)(!) g±(!̃)f�(p̃)� (! $ !̃,p $ p̃)
⇤
.

In the above expressions, |M|
2 refers to the respective

squared amplitude, summed over all spin and other in-
ternal degrees of freedom, as well as all SM particles f .
We assume the SM particles to be in thermal equilib-
rium, such that their phase-space distribution is given
by g

±(!) = 1/ [exp(!/T )± 1]. Note that we have ne-
glected Bose enhancement and Pauli blocking factors for
f� here, as we assume DM to be nonrelativistic; momen-
tum conservation then implies that, in Cann, we can also
neglect these factors for the SM particles.

Assuming CP invariance, and using the fact that in
thermal equilibrium annihilation and creation processes
should happen with the same frequency, the annihilation
term given by Eq. (2) can be further simplified to [9]

Cann = g�E

Z
d
3
p̃

(2⇡)3
v��̄�!f̄f
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h
f�,eq(E)f�,eq(Ẽ)� f�(E)f�(Ẽ)

i
, (4)

where v = vMøl ⌘ (EẼ)�1[(p · p̃)2 �m
4
�]

1/2 is the Møller
velocity, which in the rest frame of one of the DM
particles coincides with the lab velocity vlab = [s(s �

4m2
�)]

1/2
/(s� 2m2

�).
The scattering term, on the other hand, is in general

considerably more di�cult to manage. Analytic expres-
sions have, however, been obtained in the highly non-
relativistic limit of the DM particles, and assuming that
the momentum transfer in the scattering process is much
smaller than the DM mass [12, 18–22]:
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2
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where the momentum exchange rate is given by
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with

D
|M|

2
E

t
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8k4

Z 0

�4k2
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dt(�t) |M|
2 = 16⇡m2

� �T , (7)

and 4k2cm =
�
s� (m� �mf )2

� �
(s� (m� +mf )2

�
evalu-

ated at s = m
2
� + 2!m� +m

2
f . Here, �T =

R
d⌦(1 �

cos ✓)d�/d⌦ is the standard transfer cross section for
elastic scattering. In Appendix B, we discuss how
the scattering term is expected to change in the semi-
relativistic case, i.e. when the assumption of highly non-
relativistic DM is slightly relaxed. For reference, we will
in the following use

Cel '
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2
�(T )

"
TE@
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✓
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E

p
+ T

p

E
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when explicitly addressing this regime.

A. The standard treatment

In order to calculate the DM relic abundance, we can
integrate the Boltzmann Eq. (1) over p. This results in

dn�

dt
+ 3Hn� = g�

Z
d
3
p

(2⇡)3E
Cann[f�] , (9)

which has to be solved for the DM number density

n� = g�

Z
d
3
p/(2⇡)3 f�(p) (10)

(note that Cel vanishes once it is integrated over). In
order to evaluate the r.h.s. of this equation, the usual
assumption [9] is that during chemical freeze-out one can
make the following ansatz for the DM distribution:

f� = A(T )f�,eq =
n�

n�,eq
f�,eq , (11)

Expanding in NR and small momentum 
transfer:

2
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In the above expressions, |M|
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squared amplitude, summed over all spin and other in-
ternal degrees of freedom, as well as all SM particles f .
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i
, (4)

where v = vMøl ⌘ (EẼ)�1[(p · p̃)2 �m
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velocity, which in the rest frame of one of the DM
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�).
The scattering term, on the other hand, is in general

considerably more di�cult to manage. Analytic expres-
sions have, however, been obtained in the highly non-
relativistic limit of the DM particles, and assuming that
the momentum transfer in the scattering process is much
smaller than the DM mass [12, 18–22]:
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when explicitly addressing this regime.

A. The standard treatment

In order to calculate the DM relic abundance, we can
integrate the Boltzmann Eq. (1) over p. This results in
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which has to be solved for the DM number density
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(note that Cel vanishes once it is integrated over). In
order to evaluate the r.h.s. of this equation, the usual
assumption [9] is that during chemical freeze-out one can
make the following ansatz for the DM distribution:

f� = A(T )f�,eq =
n�

n�,eq
f�,eq , (11)
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portion of phase-space, with almost vanishing relative
DM momenta. This implies not only that we always have
h�vi > h�vi2 in this regime, but also that the e↵ect of
the resonance rapidly becomes negligible.

Lastly, it is interesting to note that for
p
s & mh

the annihilation rate e↵ectively features a 1/v2 veloc-
ity dependence. This is similar to resonant Sommerfeld-
enhanced annihilation, which leads to a suppressed relic
density after a prolonged freeze-out phase [30]. This
can clearly be seen in the evolution of Y (x) in Fig. 6,
for mS ⇠ mh/2, where the di↵erences between the nu-
merical and the coupled Boltzmann approach are mostly
due to the late-time di↵erences in y(x) – which in turn
come about because of the rather significant di↵erences
in f�(q) at large values of x (c.f. Fig. 5).

Appendix B: Semi-relativistic kinetic theory

In this Appendix, we discuss how to generalize the
highly non-relativistic elastic scattering term in Eq. (5)
to incorporate the most important relativistic correc-
tions needed for the numerical implementation of the full
Boltzmann equation. Throughout, we refer to this result
as ‘semi-relativistic’ scattering.

The starting point is to expand the full collision term
Cel in small momentum transfer compared to the typi-
cal DM momentum – similar to what is done in order
to arrive at Eq. (5), but not only keeping lowest-order
terms in p2

/m
2
� ⇠ T/m�. From this, we can derive a

Fokker-Planck scattering operator in a relativistic form
(for details, see [21]):

Cel '
E

2
rp ·

"
�(T,p) (ETrp + p) f�

#
. (B1)

Being a total divergence, this scattering operator man-
ifestly respects number conservation, as it should. An-
other important property, which one can directly read
o↵ from the part inside the brackets, is that it fea-
tures a stationary point given by the relativistic Maxwell-
Boltzmann distribution,

f
eq
� / e

�E/T
. (B2)

The non-relativistic limit of Eq. (B1) gives the scat-
tering operator (5), but in this limit the stationary
point would instead be the non-relativistic version f

eq
� /

exp[�p
2
/(2m�T )] — which would cause a problem in

the full BE as this does not correspond to the actual
equilibrium distribution fed into the annihilation term of
Eq. (37).

In general, the momentum transfer rate �(T,p) in
Eq. (B1) depends on the DM momentum p. However,
the stationary point is independent of �, which moti-
vates us to restrict ourselves to the leading order term
�(T ) ⌘ �(T,0), neglecting any momentum dependence,
and use the non-relativistic limit in Eq. (B1) only to eval-
uate the momentum transfer rate �(T ) as it appears in

Eq. (6). To this order, we could thus also replace the
leading E in Eq. (B1) by m�; here, we choose to still
keep it as it leads to a much more compact analytical
form of the equation governing the DM temperature (see
below). Explicitly performing the first partial derivative
in Cel then leads to the final form of our semi-relativistic
Fokker-Planck operator as given by Eq. (8). This opera-
tor is our default choice for the numerical implementation
of the full Boltzmann equation.
As already pointed out in Section IIC, it is manda-

tory for the full phase-space calculation to have a scat-
tering operator with a fixpoint that matches the equilib-
rium distribution of Eq. (B2) assumed in the annihilation
term. For the coupled integrated Boltzmann system, on
the other hand, this issue is fully addressed by using the
relativistic temperature definition of Eq. (21) — rather
than its non relativistic version typically adopted in the
literature in the context of kinetic decoupling — because
this automatically leads to the correct fixpoint T� = T

for both the semi-relativistic Eq. (8) and, to the lowest
order, for the non-relativistic version Eq. (5); see the dis-
cussion in Section II B.
Another advantage of our semi-relativistic Fokker-

Planck operator is that the di↵erential equation for T�,
often quoted when discussing kinetic decoupling, takes a
very simple form even beyond the highly non-relativistic
limit. To see this, let us for the moment ignore the im-
pact of annihilations, and take the second moment of the
Boltzmann equation with this operator (using the rela-
tivistic definition of T�). This leads to
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which of course is equivalent to Eq. (28) in the main text,
when neglecting the annihilation terms and implement-
ing the replacement given in Eq. (35). Let us repeat that
the r.h.s. of the above equation only takes this particu-
lar form with our default choice of the semi-relativistic
Fokker-Planck term, whereas the moment appearing on
the left hand side is an exact result. This equation is in
general not closed in terms of T�. However, if we make
the ansatz of a Maxwellian DM phase-space distribution,
c.f. Eq. (34), we get a relation between the di↵erent mo-
mentum moments,

5hp2/E2
i � 2hp4/E4

i = hp
4
/E

3
i/T�, (B4)

such that the di↵erential equation closes in terms of T�.
Indeed, introducing
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it takes a very simple form:

Ṫ� + 2w(T�)HT� = w(T�)�(T ) (T � T�) . (B6)

More generally, Fokker-Planck scattering operator 
(relativistic, but still small momentum transfer):

equilibrium functions for SM particles

Semi-relativistic: assume that scattering 
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form of the equation governing the DM temperature (see
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Fokker-Planck operator as given by Eq. (8). This opera-
tor is our default choice for the numerical implementation
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when neglecting the annihilation terms and implement-
ing the replacement given in Eq. (35). Let us repeat that
the r.h.s. of the above equation only takes this particu-
lar form with our default choice of the semi-relativistic
Fokker-Planck term, whereas the moment appearing on
the left hand side is an exact result. This equation is in
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is momentum independent
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Boltzmann equation can be written as:
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving
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where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.
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• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign

w.r.t. [?], as pointed out by P. Gondolo):
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where ↵s is the strong coupling for which we take the value ↵s = 0.1172.
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Figure 1. The left panel shows the phaseplot and solution for the WIMP temperature

evolution, for mχ ∼ 100 GeV and |M|
2

∼ g4
Y (mχ/ω)2, expressed in the dimensionless

variables introduced in Eqs. (8, 9). At T ! Tkd, any departure from thermal
equilibrium (Tχ = T ) is restored almost immediately (except for a short period around
the QCD phase transition); for T " Tkd, the WIMPs decouple from the thermal bath
and cool down with the Hubble expansion as Tχ ∝ a−2.

In the right panel, the effective number of relativistic degrees of freedom is plotted
as a function of the temperature, implementing the results of [25] for the evolution of
this quantity during the QCD phase transition; for reference, the decoupling of muons
and electrons is also indicated.

from this behaviour (except for a short period during the QCD transition, see below,

when the rapidly changing effective number of degrees of freedom does not allow this).

In principle, the scattering with all types of SM particles contributes to c(T ), see
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not expected to be very big; note also that the scattering with bound QCD states like,

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

y ⌘ m�T�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T� ⌘ g�

3m�n�

Z
d
3
p

(2⇡)3
p
2
f�(p) (24)

2

then 2nd moment of full BE (up to terms          ) gives:

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

y ⌘ m�T�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T� ⌘ g�

3m�n�

Z
d
3
p

(2⇡)3
p
2
f�(p) (24)

text p
2
/m

2
�

2

impact of annihilation

impact of elastic 
scatterings

First take late KD scenario and consider only temperature evolution - 
i.e. leave out feedback on/from changing number density:

actually: normalized average NR energy - equals temperature at equilibrium



ONE STEP FURTHER…
Now consider general KD scenario, i.e. coupled temperature and number density evolution: 
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)
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NUMERICAL APPROACH
… or one can just solve full phase space Boltzmann eq.
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1

discretization, 
~1000 steps

Solved numerically with MatLab

can be extended to e.g. self-scatterings
very stiff, care needed with numerics

Note:

fully general

expanded in NR and small 
momentum transfer
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(semi-relativistic!)
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SCALAR SINGLET DM 
VERY SHORT INTRODUCTION
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To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄

2
hS

-dependence of ‡SI and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄

≠2
hS

, owing to its de-
pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].

Most of the parameter space excluded, but… even such a simple model is hard to kill
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With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
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To summarize we get coupled equations:
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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Annihilation 
processes:

El. scattering 
processes:

resonant non-resonant

with:

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

tabulated 
Higgs width

S

S

h

q,l

q,l

S S

q,l q,l

h

Freeze-out at few GeV        what is the abundance of heavy quarks in QCD plasma?

 two scenarios:
QCD = A - all quarks are free and present in the plasma down to Tc =154 MeV

QCD = B - only light quarks contribute to scattering and only down to 4Tc 21
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Significant modification of the observed relic density contour in the Scalar Singlet DM model

essentially the 
only region left 
for this model

larger coupling needed          better chance for closing the last window
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RESULTS
EFFECT

effect on relic density:

effect on relic density: 
up to O(~10)

Why such non-trivial shape of the effect of early kinetic decoupling?         

Let’s inspect the y and Y evolution…

kinetic and chemical decoupling:

ratio approaches 1, 
but does not reach it!



DENSITY AND TDM EVOLUTION
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Resonant annihilation most effective for low momenta
             DM fluid goes through ”heating” phase before leaves kinetic equilibrium

co-moving 
number density

for mDM = 62 GeV,   i.e. just below the resonance:

DM 
temperature



DENSITY AND TDM EVOLUTION
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Resonant annihilation most effective for high momenta
             DM fluid goes through fast ”cooling” phase

for mDM = 57 GeV,   i.e. further away from the resonance:

after that when TDM drops to much annihilation not effective anymore



FULL PHASE-SPACE BE SOLVER
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Solutions for full phase-space distribution function:

Results of both approaches compatible:
 some deviation from equilibrium shape mildly affects the Y and y evolution

Allows to study the evolution of        and
the interplay between scatterings and annihilation!

f�(p)
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Figure 6: LEFT: Evolution, due to annihilation/creation, of the DM phase-
space distribution, f(r, x), from an initial distribution with two bumps (blue
line) at r = 20 to three later times r = 20.001, 20.01, 20.1 (red lines). The
equilibrium distribution at r = 20.1 from Eq. (8) is shown by the black line.
As displayed by the integrated number density (“int =

∫

x2f(r, x)dx”) the
comoving number density is not conserved when DM annihilation/creation
is present.

full-phase space setup however uses the non-relativistic f eq
n.r. (required

by our scattering term). Nevertheless, for the cγ = 0 setup, we can still
consistently use the relativistic f eq. Implementing f eq (temporarily)
reveals that exact agreement, to 3 digits, Ωh2 = 0.0809 is achieved.

In Fig. 7 we present the full phase space distribution (right panel) and
the integrated relic density Yχ derived from Eq. (24) (left panel). It is worth
to point out that this is already a deviation from the standard calculation
— as the phase space distribution differs from equilibrium during freeze-out.
Adding a scattering term would of course drive the momentum distribu-
tion towards the equilibrium distribution, as demonstrated in the previous
section, and for S-wave the f(x) distribution does not impact the relic abun-
dance result. I did not investigate if already this phase-space distribution
deviates from ∝ f eq

n.r.(rf.o., x), where rf.o. is some suitable freeze-out temper-
ature. Decreasing the initial time r0 < 20 did not change the phase space
result, showing that starting at r = 20 is sufficient also for the kinetic freeze-

12

we have already seen that even if scatterings 
were very inefficient compared to annihilation, 
departure from equilibrium for both Y and y 
happened around the same time…

Obvious issue: 
How to define exactly the kinetic and chemical decouplings and what is the significance of such definitions?

Improved question:
Can kinetic decoupling happen much earlier than chemical?

)
turn off scatterings and take s-wave annihilation;
look at local disturbance

annihilation/production precesses drive to 
restore kinetic equilibrium!
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1. One needs to remember that kinetic equilibrium is a 
necessary assumption for standard relic density calculations

2. Coupled system of Boltzmann equations for 0th and 2nd 
moments allow for a very accurate treatment of the kinetic 
decoupling and its effect on relic density

3. In special cases the full phase space Boltzmann equation can 
be necessary — especially if one wants to trace DM 
temperature as well

Exception N: 
sometimes kinetic decoupling happens together with freeze-out…



EXCEPTION N+1: 
NLO EFFECTS
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Relic density computation at NLO from first principles

December 9, 2013

1 Introduction

Observations at astrophysical and cosmological scales indicate existence of yet unknown, non-baryonic particle
dark matter (DM) component with the present day energy density [1]:

⌦DMh
2 = 0.1187 ± 0.0017. (1)

Observations based on purely gravitational e↵ects cannot however provide an answer to the question of its origin,
therefore after several decades it still remains open. One of the most natural and widely studied possibility is that
dark matter arises as a thermal relic, i.e., it is produced thermally in the Early Universe and freezes-out when
the temperature of the plasma is not high enough to keep the dark matter component in chemical equilibrium.
The moment when it happens is determined by physical processes involving three di↵erent energy scales: the
Hubble expansion rate H, the interaction (annihilation) rate � and the scale of inhomogeneity of the system. The
latter is usually neglected as one assumes that before the freeze-out the whole system is in thermal equilibrium
(having infinite inhomogeneity length) and the process of chemical decoupling of dark matter component does not
introduce large departure of equilibrium of the background plasma. Additionally, if one assumes that the Compton
wavelength of DM particles is small with respect to inhomogeneity scale (the quasi-particle approximation) and
that one can neglect all memory e↵ects, one arrives in semi-classical description of the evolution of phase space
density functions f(p). In this case, the transport is governed by the Boltzmann equation. For the relic density
computation it is typically written in the Friedmann-Robertson-Walker background and as an equation for the
number density of given species i:

ni(t) =
hi

(2⇡)3

Z
d
3
pfi(p), (2)

with the hi being the number of internal degrees of freedom, as follows

dn�

dt
+ 3Hn� = �
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d⇧�d⇧ad⇧b...d⇧id⇧j ...|M�ab...!ij...|

2(2⇡)4�(4)(p� + pa + pb + ... � pi � pj � ...) ⇥

[f�fafb...(1 ± fi)(1 ± fj)... � fifj ...(1 ± f�)(1 ± fa)(1 ± fb)...] , (3)

for a process �ab... ! ij... and where we assumed CP invariance resulting in |M�ab...!ij...|
2 = |Mij...!�ab...|

2.
In recent years there has been an increasing interest in higher order corrections to scattering and annihilation

processes involving DM particles. The main phenomenological importance of such corrections is in the possibly
large modification of the annihilation spectra [?] and in the scattering rates in the direct detection experiments [?].
It has been also noted recently that in some cases the corrections to the annihilation rate � at early times
can be significant and can lead to a non-negligible e↵ect in the relic density computation [2–6]. Few projects
aiming in providing numerical codes including the higher order corrections have been started and are under
developement [?, ?]. Moreover, the increasing precision of the observational data will require even more precise
computations on the theoretical side, in some cases at full next to leading order (NLO) in the coupling constant.

However, using in the standard relic density computation the scattering matrix elements at NLO gives rise
to two questions: i) whether the transport equation itself receives quantum corrections and ii) how does the
cancellation of possible (soft and/or collinear) IR divergences take place? The first point was studied in detail
in [7] in the context of electroweak baryogenesis (see also [?]), and we will discuss it in section 3. Now we will
illustrate the second issue.

1
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Ciafaloni et al.,  1202.0692
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Recall at LO:

CLO = �h2
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crucial point: 

in Maxwell approx.

p� + p�̄ = pi + pj ) f eq
� f eq
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at NLO both virtual one-loop and 3-body processes contribute:

photon can be 
arbitrarily soft
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Maxwell approx. not valid anymore...
...problem:  T-dependend IR divergence!
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only this used in NLO literature so far
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and for the fermion
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where here TC denotes the time ordering operation along the contour. They correspond to four
Green’s functions with real time arguments each:
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1. how the (soft and collinear) IR divergence cancellation 
happen?

2. does Boltzmann equation itself receive quantum corrections?

3. how large are the remaining finite T corrections?

QUESTIONS:

Program: develop a method for relic density calculation 
directly from QFT and free from IR problems

framework exists: non-equilibrium thermal field theory 
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contour Green’s functions obey Dyson-Schwinger eqs:
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Figure 1. The contour C in the complex time plane. The value tmax can be taken to be +1 for practical
computations.

dependence di↵erent than on the relative coordinate. Therefore, for systems not far from equilib-
rium it is useful to perform the Wigner transform and define the Green’s functions (and analogically
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where the superscript ‘0’ denotes the free Green’s functions, and ⇧,⌃ are the self-energies. These can
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and where the subscript h denotes the hermitian part, ⇧h = ⇧c
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and the Green’s functions. These equations for the Green’s functions are exact functional equations,
which are however very non-trivial to solve. At this point we will use the approximations described
in the introduction. Firstly we go to the Wigner space. This is not an approximation in itself, but we
will additionally assume that one can take the tmin = �1, which results in discarding any memory
e↵ect. Next we perform the gradient expansion up to the first order in gradients. The equations
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e.g. [16? ]). The proof of cancellation of all divergences in general case is not completed, however
partial results exist in the literature [17? , 18]. The known results show the physical reason for the
thermal divergence cancellation: the photons in the plasma contribute not only to the soft/collinear
emission but also to the virtual processes of the two-body amplitude.

The same physical reason holds in the case of the chemical decoupling. In the next section we
present a framework of computing the relic density, based on deriving the Boltzmann equation from the
Kadano↵-Baym equations [19]. This derivation is a well known procedure in non-equilibrium thermal
field theory and gives a prescription for the computation of the collision term which consistently takes
into account all the thermal corrections leading to IR divergence cancellation and also automatically
gives the finite temperature-dependent correction.

In the example model we will consider, we can directly observe the cancellation of both soft
and collinear divergences. As we will show, the IR finiteness of the collision term boils down to the
finiteness of the DM self-energies in the thermal background. We find that the standard procedure
of computing the scattering amplitudes at zero temperature and plugging it into the semi-classical
Boltzmann equation give IR finite result, which is correct with a very good accuracy; in the low
temperature regime, i.e. ⌧ ⌘

T
m�

⌧ 1 which is the case of the freeze-out process, neglecting the

thermal e↵ect gives an error which is of order O(↵⌧2), with ↵ being the fine structure constant.

3 Derivation of the quantum Boltzmann equation

The aim of this section is to shortly review the procedure of obtaining the transport equation for
the phase space density functions, and then after performing Wigner transformation and gradient
expansion recovering the Boltzmann equation []. We will work in the Closed Time Path (CTP)
formulation of thermal QFT (for a review see e.g. [20]), where all the Green’s functions are defined
on a complex time plane along the contour C, see fig.1. In particular the contour Green’s function
for the complex scalar is

i�(x, y) = hTC�(x)�†(y)i, (3.1)

and for the fermion
iS↵�(x, y) = hTC ↵(x) ̄�(y)i, (3.2)

where here TC denotes the time ordering operation along the contour. They correspond to four
Green’s functions with real time arguments each:

i�>(x, y) ⌘ h�(x)�†(y)i i�<(x, y) ⌘ h�
†(y)�(x)i (3.3)

i�c(x, y) ⌘ hT
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for fermions, where T
c(T a) denotes chronological (anti-chronological) time ordering along the real

time.3 The h. . .i denotes the averaging over an ensemble at time tmin.
This formalism therefore describes a general non-equilibrium system, where all the physical

macroscopic observables are averages over an ensemble. The CTP formulation originates from the
periodicity of the boundary conditions of the partition function in path integral formalism. The
introduction of additional Green’s functions leads to the need of doubling of the degrees of freedom
of the theory by including ghosts, which are defined on the lower branch of the contour. These states
do not appear as external one, but result in modification of the Feynman rules (see Appendix A).

In a general non-equilibrium system all these functions depend on both space-time coordinates.
This can be rephrased that they depend on both the relative coordinate r = x � y and the aver-
aged (macroscopic) one X = x+y

2
. In equilibrium, however, the system cannot have any space-time

3
Often the upper branch is called ‘1’ and lower ‘2’ and the propagators are denoted as �

>
= �21, �

<
= �12,

�
c
= �11 and �

a
= �22 and similarly for the fermions.
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Figure 2: The contour C in the complex time plane. The value tmax can be taken to be +1 for practical
computations.

(essentially the Fourier transform in r) and define the Green’s functions (and analogically self-energies) in the
Winger space
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The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the other hand
describes large scale fluctuations, i.e. inhomogeneities. In the equilibrium in the Wigner space all Green’s functions
are described only by the dependence on the momentum Geq(p).

The contour Green’s functions obey the Dyson-Schwinger equation:
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where the superscript ‘0’ denotes the free Green’s functions, and ⇧, ⌃ are the self energies. After short derivation
these can be rewritten in the form of Kadano↵-Baym equations [13]:
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very non-trivial to solve. At this point we will use the approximations described in the introduction. Firstly we
go to the Wigner space. This is not an approximation in itself, but we will additionally assume that one can take
the tmin = �1, which results in discarding any memory e↵ect. Next we perform the gradient expansion up to the
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be rewritten in the form of Kadano↵-Baym equations [19]:

(�@
2
�m

2

�)�
<>(x, y) �

Z
d
4
z

⇣
⇧h(x, z)�

<>(z, y) � ⇧
<>(x, z)�h(z, y)

⌘
= C�, (3.10)

for the scalars and

(i/@ �m�)S
<>(x, y) �

Z
d
4
z

⇣
⌃h(x, z)S

<>(z, y) � ⌃
<>(x, z)Sh(z, y)

⌘
= C�, (3.11)

for fermions, where the collision terms are defined as:

C� =
1

2

Z
d
4
z
�
⇧>(x, z)�<(z, y) � ⇧<(x, z)�>(z, y)

�
, (3.12)

C� =
1

2

Z
d
4
z
�
⌃>(x, z)S<(z, y) � ⌃<(x, z)S>(z, y)

�
, (3.13)

and where the subscript h denotes the hermitian part, ⇧h = ⇧c
�

1

2
(⇧>

� ⇧<) and analogously for ⌃
and the Green’s functions. These equations for the Green’s functions are exact functional equations,
which are however very non-trivial to solve. At this point we will use the approximations described
in the introduction. Firstly we go to the Wigner space. This is not an approximation in itself, but we
will additionally assume that one can take the tmin = �1, which results in discarding any memory
e↵ect. Next we perform the gradient expansion up to the first order in gradients. The equations

– 5 –

C tmax

tmin

t

Figure 1. The contour C in the complex time plane. The value tmax can be taken to be +1 for practical
computations.

dependence di↵erent than on the relative coordinate. Therefore, for systems not far from equilib-
rium it is useful to perform the Wigner transform and define the Green’s functions (and analogically
self-energies) in the Wigner space

G(X, p) ⌘

Z tmax

tmin

d
4
ue

ipu
G (X � u/2, X + u/2) . (3.7)

The dependence on p describes the fluctuations on particle scale, while on the coordinate X on the
other hand describes large scale fluctuations, i.e. inhomogeneities. In the equilibrium in the Wigner
space all Green’s functions are described only by the dependence on the momentum Geq(p).

The contour Green’s functions obey the Dyson-Schwinger equation:

�(x, y) = �0(x, y) �

Z

C
d
4
z

Z

C
d
4
z
0�0(x, z)⇧(z, z0)�(z0, y), (3.8)

S↵�(x, y) = S
0

↵�(x, y) �

Z

C
d
4
z

Z

C
d
4
z
0
S
0

↵�(x, z)⌃�⇢(z, z
0)S⇢�(z0, y), (3.9)

where the superscript ‘0’ denotes the free Green’s functions, and ⇧,⌃ are the self-energies. These can
be rewritten in the form of Kadano↵-Baym equations [19]:

(�@
2
�m

2

�)�
<>(x, y) �

Z
d
4
z

⇣
⇧h(x, z)�

<>(z, y) � ⇧
<>(x, z)�h(z, y)

⌘
= C�, (3.10)

for the scalars and

(i/@ �m�)S
<>(x, y) �

Z
d
4
z

⇣
⌃h(x, z)S

<>(z, y) � ⌃
<>(x, z)Sh(z, y)

⌘
= C�, (3.11)

for fermions, where the collision terms are defined as:

C� =
1

2

Z
d
4
z
�
⇧>(x, z)�<(z, y) � ⇧<(x, z)�>(z, y)

�
, (3.12)

C� =
1

2

Z
d
4
z
�
⌃>(x, z)S<(z, y) � ⌃<(x, z)S>(z, y)

�
, (3.13)

and where the subscript h denotes the hermitian part, ⇧h = ⇧c
�

1

2
(⇧>

� ⇧<) and analogously for ⌃
and the Green’s functions. These equations for the Green’s functions are exact functional equations,
which are however very non-trivial to solve. At this point we will use the approximations described
in the introduction. Firstly we go to the Wigner space. This is not an approximation in itself, but we
will additionally assume that one can take the tmin = �1, which results in discarding any memory
e↵ect. Next we perform the gradient expansion up to the first order in gradients. The equations

– 5 –

34



CLOSED TIME PATH
PATH TO BOLTZMANN EQUATION

Assumptions:
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the fermion collision terms is defined as:
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Figure 5. Tree level annihilation diagrams for a Majorana fermion and the matching with the two loop
self-energies. Note the correspondence between reversing the arrows flow and crossing the external legs.
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. The negative energy solutions can be related via crossing symmetry

to di↵erent scattering processes by interpreting a negative energy particle in the initial (final) state
as a positive energy one in the final (initial) state. In this case all of these processes are kinematically
forbidden, so we get
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As we anticipated, the structure of the result is now manifestly as in eq.(2.3), namely those of a
thermally averaged cross-section times velocity multiplied by the statistical factors corresponding to
the process �1 (q)�2 (t) ! f (k1) f̄ (k2). Note that an integration in d

4
q is missing, the overall

sign is di↵erent and the d.o.f. factors h�h�̄ are missing. The matrix element squared can be
recognized as the interference term between the two tree level diagrams for the annihilation process
�� ! ff̄ , as shown on fig.5.
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Figure 2. The DM self-energy at one loop. The same diagram with reversed arrows is not shown for simplicity,
but it is also consistently taken into account.

++
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Figure 3. The DM self-energy at two loops. The same diagrams with reversed arrows are not shown for
simplicity, but they are also consistently taken into account and denoted by a superscript rev in the following.
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Figure 4. i⌃>
A as given by the finite temperature cutting rules. Uncircled and circled vertices denote

respectively type ‘1’ and type ‘2’. vertices.

We start from the calculation at leading order to show the correspondence between the self-energy
diagrams and the scattering (annihilation) ones. The self energy at one loop, fig.2, describes 1 $ 2
processes, which are not relevant for the relic density computation. Therefore, the LO annihilation
process is given by the two loop self-energies on fig.3. We will now show that they encode the amplitude
squared of the tree level annihilation process �� $ ff̄ . The self energies ⌃<,> are computed from
the diagrams discussed above by applying the finite temperature Feynman rules (see Appendix A),
with the proper treatment of the fermion number violating interactions of Majorana fermion as in
[25].

Let’s start by computing the contribution to ⌃>(q) from diagram A. In this case the left vertex
is of the type ‘1’ and the right ‘2’, while one has to sum over both types of internal vertices. This
leads to the sum of the four diagrams in fig.4, where uncircled and circled vertices denote type ‘1’
and type ‘2’ vertices, respectively. Note that the only diagram that we have to compute is AIII, since
the other three contain the only thermal part of the sfermion propagator, which for m� > m� � T

is exponentially suppressed. Fixing the fermion flow and assigning the momenta as in fig.3, once all
the kinematically forbidden terms are dropped, the result reads
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for transport phenomena at finite temperature it has no physical meaning to separate production from annihilation

processes, since they both concur to the determination of the phase space distribution functions of the various species,

in which the physical information is contained.
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S =
i

(k1 � q)2 �m
2

�

·
�i

(k1 � t)2 �m
2

�

. (4.3)

for transport phenomena at finite temperature it has no physical meaning to separate production from annihilation

processes, since they both concur to the determination of the phase space distribution functions of the various species,

in which the physical information is contained.
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cut scalar propagator

)

summed over dotted and 
undotted indices
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Figure 5. Tree level annihilation diagrams for a Majorana fermion and the matching with the two loop
self-energies. Note the correspondence between reversing the arrows flow and crossing the external legs.

In the fermion part F both the T = 0 and the thermal parts contribute, giving

F = Tr
⇥
PR (/k

2
+ mf )PL

�
/t + m�

�
PL (/k

1
+ mf )PR

�
/q + m�

�⇤
⇥
�2⇡ �

�
q
2
�m

2

�

�
"
�
q
0
�
f� (q)

⇤ ⇥
�2⇡ �

�
t
2
�m

2

�

�
"
�
t
0
�
f� (t)

⇤
h
2⇡ �

�
k
2

1
�m

2

f

�
"
�
k
0

1

� ⇣
1 � f

eq

f

�
k
0

1

�⌘i h
2⇡ �

�
k
2

2
�m

2

f

�
"
�
k
0

2

� ⇣
1 � f

eq

f

�
k
0

2

�⌘i
, (4.4)

where the trace arise since the self-energy and the propagator at the l.h.s. of eq.(4.2) are contracted
as ⌃>

↵�S
<
�↵. Note that, as explained in the introduction, we assume the background plasma to be in

equilibrium and therefore take the Fermi-Dirac distribution function f
eq

f for the SM fermions. Now
we write the �-functions by using

�
�
p
2
�m

2
�

=
1

2p0
�
�
�
p
0
� Ep

�
+ �

�
p
0 + Ep

��
, (4.5)

and integrate over dk
0
1

and dk
0
2
. The negative energy solutions can be related via crossing symmetry

to di↵erent scattering processes by interpreting a negative energy particle in the initial (final) state
as a positive energy one in the final (initial) state. In this case all of these processes are kinematically
forbidden, so we get

⌃>
AIII

(q)S< (q) =
1

2E�1

(2⇡) �
�
q
0
� E�1

� Z d
4
t

(2⇡)3 2E�2

�
�
t
0
� E�2

�

Z
d
3~k1

(2⇡)3 2Ef1

d
3~k2

(2⇡)3 2Ef2

(2⇡)4 � (q + t� k1 � k2)

|MA|
2

h
f� (q) f� (t)

⇣
1 � f

eq

f

�
k
0

1

�⌘⇣
1 � f

eq

f

�
k
0

2

�⌘i
. (4.6)

As we anticipated, the structure of the result is now manifestly as in eq.(2.3), namely those of a
thermally averaged cross-section times velocity multiplied by the statistical factors corresponding to
the process �1 (q)�2 (t) ! f (k1) f̄ (k2). Note that an integration in d

4
q is missing, the overall

sign is di↵erent and the d.o.f. factors h�h�̄ are missing. The matrix element squared can be
recognized as the interference term between the two tree level diagrams for the annihilation process
�� ! ff̄ , as shown on fig.5.

|MAIII |
2 = (�1)�4

S Tr [· · ·]

= �Mtree (Mexc

tree
)⇤ . (4.7)

The same procedure applied to the diagram B in fig.3 and to the corresponding diagrams with
reversed arrows leads to the identifications

|MBII |
2 = |Mtree|

2
, (4.8)

|M
rev
AIII

|
2 = �M

exc

tree
(Mtree)

⇤
, (4.9)

|M
rev
BII

|
2 = |M

exc

tree
|
2
, (4.10)
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(part of) tree level |M|2

after inserting the propagators:

⌃>
AIII

(q)S< (q) =
1

2E�1

(2⇡) �
�
q0 � E�1

� Z d4t

(2⇡)3 2E�2

�
�
t0 � E�2

�

Z
d3~k1

(2⇡)3 2Ef1

d3~k2

(2⇡)3 2Ef2

(2⇡)4 � (q + t� k1 � k2) |MA|2
h
f� (q) f� (t)

⇣
1� f eq

f

�
k01

�⌘⇣
1� f eq

f

�
k02

�⌘i

⇥

one indeed recovers the known collision term and)

|MA|2 =

tree level annihilation 
contribution to the collision term

i⌃> $

repeating the same for B type diagrams the bottom line:

39
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i⌃3 =

k2 + s

q

k1 � qk1 + s � q

t

q

k1 + s k1

s

k2
$ + + +

M4 (Mtree)
⇤ (MA)

⇤
MC MA (MC)

⇤
Mtree

(M4)
⇤

$ + + +

4 t C A A C t 4

Figure 6. An example three-loop self-energy diagram decomposed as a sum over di↵erent cuts to extract
⌃<, and the matching of the cut diagrams into scattering ones. ⌃< is obtained by taking the sum over the
possible diagrams in which the vertex attached to the external line on the left (right) is of type ‘1’ (‘2’). The
matching with scattering diagrams in the second line follows as explained for the LO case in section 4.2. In
particular the correspondence between reversing the arrows flow and crossing the external legs is the same as
displayed in fig.5, so for simplicity, from this figure on, we will denote with a single diagram with no arrows
the sum of the two corresponding diagrams.

where we can already observe that the momentum conservation delta function refers to a 2 ! 3
process �(q)�(t) ! f(k1)f̄(k2)�(s). To see that the considered diagram indeed encodes the cross-
section for the photon emission process, note that in the scalar part S we again take only the T = 0
part of the propagators, while the vector V and fermion F1, F2 parts, leaving understood the trace
over the Dirac matrices that can be factorized, are given by

V = �gµ⌫ 2⇡ �(s2)"(s0)
�
1 + f

eq

� (s0)
�
, (4.15)

F1 /
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2

f

+ 2⇡ �
�
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2

f
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k
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2
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0
� ⇣

1 � f
eq

f
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k
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2
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0
�⌘

#
⇥
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2
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2

f

�
"
�
k
0

2

� ⇣
1 � f

eq

f (k0
2
)
⌘i ⇥

�2⇡ �
�
t
2
�m

2

�
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"
�
t
0
�
f�(t0)

⇤
(4.16)
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2
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�
"
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0

1
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0
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0
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�
k
2

1
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2

f

�
"
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0
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� ⇣
1 � f
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f (k0
1
)
⌘i ⇥

�2⇡ �
�
q
2
�m

2

�

�
"
�
q
0
�
f�(q0)

⇤
. (4.17)

Note that the distribution functions accompanied by the on-shell delta functions can be used to read
out the corresponding scattering process, since (1 ± fB,F ) denotes an outgoing particle, while ±fB,F

an ingoing one. Finally the thermal part of the two diagonal fermion propagators give vanishing
contributions, since the corresponding processes are kinematically forbidden. In F1 one can see that

�

⇣
(k2 + s)2 �m

2

f

⌘
is not compatible with �

⇣
k
2
2
�m

2

f

⌘
, and in F2 the same combination appears

with k2 ! k1. The result is then

⌃>
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(q)S< (q) =
1

2E�1
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q
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(2⇡)3 2E�
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1 � f
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f
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2
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1 + f

eq
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��i

.(4.18)

In the remaining part of this section we describe the method of performing calculations empha-
sizing the di↵erence with respect to the T = 0 case. The results and its discussion will follow in
section 5.
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20 self-energy diagrams

example:
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(0.29)
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(0.34)

Z 1

0

d!f(!)S(!, e�, ✏, ⇠), (0.35)

a = atree (1 +�a) +O(⌧4) with �a =
8⇡

3
↵⌧

2
1

1� 4✏2 + ⇠2
. (0.36)
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⇡↵⌧
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@⇠2
�vtree +O(⌧4), (0.37)
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RESULTS

IR divergence in separate terms:

5 Results

The result for the NLO correction to the collision term, after performing the integrations over the phase
space of final particles, depends on five physical quantities: m�, E�, mf , m� and T (or equivalently
m� setting the energy scale and dimensionless parameters e�, ✏, ⇠ and ⌧). Every contribution can be
expressed in a form: Z

1

0

d!f(!)S(!, e�, ✏, ⇠), (5.1)

where S is the properly normalized matrix element squared integrated over angles and energies of the
SM fermions and does not depend on the T , and the distribution function is fB for bosons and fD for
fermions. The temperature dependence is only via f(!), where ! is the energy of the thermal particle.
The integral over ! arises due to integration over the phase space (in emission and absorption) or
the virtual four-momentum (virtual corrections). In the model we studied there exist no closed form
expression for the total S(!, e�, ✏, ⇠) and therefore we will present the results in the non-relativistic
expansion for the lowest partial waves.8

The distribution function is vanishing exponentially for large !, therefore up to terms of the
order O(e�1/⌧ ), we can expand in ! around zero. Then one can easily isolate the soft IR divergent
contributions in S(!, e�, ✏, ⇠), since

Jn ⌘

Z
1

0

fB(!)!n
d! =

⇢
div n  0

⇠ ⌧
n+1

n > 0
, In ⌘

Z
1

0

fD(!)!n
d! =

⇢
div n  �1

⇠ ⌧
n+1

n > �1
. (5.2)

In both cases of thermal photons and fermions the finite NLO correction of the order O(↵⌧2) is
encoded in the linear term in ! of the function S. Note again that the integral In appears only in the
massless fermions case, while otherwise the lower extreme of integration is mf and and the integral
cannot be solved analytically.

5.1 IR divergence cancellation

In zero temperature the structure of the IR divergence cancellation between the virtual and real
corrections in a given process can be understood by looking at the structure of the corresponding
self-energy diagram. Namely, all the IR divergent terms cancel out after summing of all the possible
cuts []. We have found that it is also true in finite temperature, with the additional cuts related to
the thermal parts of the propagators. This ensures that the collision term is finite, since it is directly
built out of self-energies ⌃<,>.

In order to show how the cancellation takes place, let’s discuss in detail the s-wave case for
the correction coming from thermal photons; the same discussion holds for higher partial waves and
analogous one for the corrections from thermal massless fermions.

At the one-loop level the amplitude can have divergent terms at most of the order O(!�1),
which at T = 0 leads to the logarithmic divergence in the soft limit. In finite temperature, this
results in the expansion of the function S having non-vanishing orders O(!n), with n � �1. Because
of the distribution function fB(!) this leads to two first orders in expansion being proportional to
J�1 and J0, respectively. As already pointed out, the latter one vanishes when both the emission
and absorption of thermal photons are included, due to the di↵erent sign of these contributions for
even orders in !. The results for the remaining part proportional to J�1 are given for all separate
self-energy diagrams in the table 3, where the tree level atree has been factorized.9

One can see that indeed the cancellation holds not only after summing all the contributions, but
also for every self-energy separately. The logarithm present in the last row is defined in table 6 and it

8
Additionally, for the full energy dependence we have performed computations expanded in the scalar mediator

mass, up to the order O(⇠�10
). Typically the scalar mediator of the hard interaction process is significantly heavier

than the DM (however one can also consider quasi-degenerate scenarios [3]). Nevertheless, excluding extremely fine

tuned scenarios, the expansion in ⇠ captures all the physics properties of the model, though one needs to retain up to

the order O(⇠�8
) to see the helicity suppression lifting of the non-thermal NLO contribution.

9
The fact that the divergence can be factorized from the tree level is related to the fact that it comes from the soft

region. The same structure of the divergence was found for the hard photon scattering in the thermal plasma [17].
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every contribution can be written in a form:

photon energy

Z 1

0
d!f�(!)S(!, e�, ✏, ⇠) f�(!) =

1

1� e!/T

expand in!

S =
1X

i=�1

sn!
n

note:

J�1 $ T = 0 soft div
J0 $ T = 0 soft eikonal

finite T corrections: J1 $ O(⌧2) …
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The divergent part J�1

Type A Real Virtual External Type B Real Virtual External
↵(1�2✏2)

⇡✏2 �
↵(1�2✏2)

⇡✏2 �
↵
⇡✏2

↵
⇡✏2

↵(1�2✏2)
⇡✏2 �

↵(1�2✏2)
⇡✏2 �

↵
⇡✏2

↵
⇡✏2

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

2↵(1�2✏2)2

⇡✏2
p
1�4✏2

L �
2↵(1�2✏2)2

⇡✏2
p
1�4✏2

L
2↵(1�2✏2)
⇡✏2

p
1�4✏2

L �
2↵(1�2✏2)
⇡✏2

p
1�4✏2

L

Table 3. The divergent part coe�cients multiplying the tree level result atree. For both diagrams of type
A and B the sum over di↵erent contributions, i.e. the CTP cuts, vanishes. When both types of diagrams
are added, the result gets helicity suppressed, i.e. terms with the ✏2 in the denominator cancel. The “Real”
includes both the emission and absorption. Empty space stands for no corresponding cut, while 0 when the
diagram exists, but gives no divergent part. The L denotes the logarithm as defined in table 6.

5.2 The finite T correction from thermal photons

After the divergent J�1 and J0 contributions are cancelled out, the remaining finite correction is
necessarily of the order of at least O(⌧2). Again, we will show first the explicit results for the s-wave,
which can be found in tables 4 and 5, where we have factorized ↵

⇡✏2 atree. One can immediately see that
the separate contributions are significantly more complex, but simplify considerably after summing
over di↵erent cuts for a given self-energy. It is also worth noting that all the logarithms vanish already
at single self-energy level, which is a sign of cancellation of the collinear divergence. What seems even
more remarkable is that after adding all of the contributions together the result is extremely simple.
It can be written as:

a = atree (1 + �a) + O(⌧4) with �a =
8⇡

3
↵⌧

2
1

1 � 4✏2 + ⇠2
. (5.2)

It is worth noticing that the leading thermal correction is suppressed not only by ↵⌧
2 but also one

power of ⇠2. This is true not only in the case of s-wave, but also for a generic partial wave. In fact,
it turns out that the total O(⌧2) correction coming from thermal photons can be computed directly
from the tree level. The full result can be written as:

�v = �vtree �
4

3
⇡↵⌧

2
@

@⇠2
�vtree + O(⌧4), (5.3)

which we found in both s- and p-wave. For generic partial wave the computation of the phase space
integrals is more involved and no closed form can be obtained without resorting to any additional
expansion. Therefore, we computed the corrections in the limit of ⇠ � 1, i.e. up to the order
O(⌧2, ⇠�10), retaining full dependence on e� and ✏. We found that the same formula holds, allowing
us to conjecture that it is valid even beyond the non-relativistic approximation.
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cancels in 
every row
separately

) every CTP self-energy is IR finite
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The finite part J1

Type A Real Virtual External

2(1�⇠2)
D2D2

⇠
+ (1�2✏2)p1(✏,⇠)

2D2D2
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⇠

�
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⇠

�
f1(✏,⇠)
p
DD2

⇠

L
2(1�2✏2)(D�⇠2)

D2
⇠

+ f1(✏,⇠)
p
DD2

⇠

L

— ” — — ” —

— ” — — ” —

— ” — — ” —

�
4(1�2✏2)D

D2
⇠

— ” —

2(1�2✏2)p2(✏,⇠)+(1�⇠2)2

D2D2
⇠

+ 4f2(✏,⇠)
p
DD2

⇠

L
16✏2(2�3✏2)�(3�⇠2)2

D2
⇠

�
4f2(✏,⇠)
p
DD2

⇠

L

Total: �
8(1�2✏2)

D⇠

Table 4. The finite O(⌧2) part coe�cients multiplying the ⇡
6↵⌧

2 atree
✏2

for diagrams of type A. The factors D,
D⇠ and polynomials pi and fi are defined in table 6.

This observed property of the leading correction seems accidental, however it is not the only
example of some “universality” in the temperature corrections. In the charged particle decay [16] the
finite correction was also found to be factorizable from the tree level and reads �

⇡
3
↵⌧

2, while in the
neutral Higgs decay to two fermions it vanishes [? ]. This strongly suggests that the correction is
related to the coupling to the multipole expansions of the initial or final state. In our case the charge
itself is zero, but higher moments are not, which might be the reason for the ⇠ suppression.

Moreover, we see that the thermal e↵ects do not lift the helicity suppression at the leading order,
even though the NLO T = 0 correction does. This is easy to understand, since it is the hard photon
emission from virtual internal bremsstrahlung (VIB) that changes the momentum structure of the
final state and lifts the helicity suppression in T = 0 case, while here such contributions are strongly
suppressed. In fact, next order in temperature already gives helicity braking contribution, which
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The thermal correction can dominate over the tree level contribution to s-wave when ✏ is very small
(e.g., for SM leptons), but it nevertheless is parametrically smaller than both the p-wave and the
correction of order O(↵), because ⌧ ⇠ v

2 as the distribution of DM particles is thermal. Also the
lifting of the helicity suppression is parametrically less important that its T = 0 counterpart, due to
⌧
4, while both come from VIB and have the same order ⇠

�8 suppression.
Finally, we would like to comment that the same relation (5.3) holds also for the Dirac fermion

case, as can be also expected from the structure of the final correction in table 5. Namely, for both self-
energy types A and B, the corresponding tree level factorizes from the correction, and the di↵erence
between the Majorana and Dirac cases is only in the existence of diagrams of type A in the former.
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Operator Product 
Expansion 

clear separation of soft (thermal effects) 
and hard (annihilation/decay) modes

and simplicity of the O(T 2) corrections, the OPE offers a considerable simplification of

the calculations. The approach presented here can be straightforwardly applied to other

physically motivated situations such as the co-annihilation of charged states during freeze-

out. We note that OPE methods have been developed systematically before for thermal

field theory in the QCD context for SVZ sum rules at finite temperature [6, 7], and for the

study of more general spectral functions in the low-energy QCD plasma [8].

2 Charged particle decay at finite temperature

For definiteness we consider the spin-averaged total width of a fermion ψ with electric

charge q into another fermion χ of the same electric charge and other neutral particles in

an unpolarized thermal bath of photons and SM fermions f at a temperature T . Specific

examples are those of [3], ψ → χφ, where φ is a neutral scalar, and the more realistic muon

decay µ → eνµν̄e. We assume that the temperature of the bath is small compared to the

ψ mass, mψ " T . but can be of the same order or even much larger than mass of the

other charged particle. We further assume that the decay occurs at rest with respect to the

thermal bath. The decay rate will be modified compared to the zero-temperature value by

interactions with the plasma.

The decay of ψ is caused by a weak interaction

L = λJµOµ + h.c. (2.1)

where Jµ is the fermion current and Oµ represents the neutral fields. For the toy situation

ψ → χφ, Jµ = χ̄PLψ (PL = 1−γ5
2 ) and Oµ = φ, while for muon decay Jµ = [ēµ]V−A,

Oµ = [ν̄µνe]V−A and λ = −GF/
√
2. By the optical theorem the decay width can be

expressed as

ΓT = λ2Lµν 2 Im {Tµν} (2.2)

to lowest order in the weak coupling λ, but to all orders in the electromagnetic interaction.

Here Im {Tµν} refers to the discontinuity of

Tµν =
1

2

∑

spin

(−i)

∫
d4x e−ip·x 〈ψ;T | T {Jµ(0)J†

ν (x)}|ψ;T 〉, (2.3)

and Lµν to the neutral particles, which are unaffected by the plasma, integrated over

phase space. |ψ;T 〉 denotes the ψ one-particle state with momentum p = mψ;T v and non-

relativistic normalization in the thermal bath. We can decompose pµ = mψvµ + kµ, where

v is the four-velocity of the plasma and mψ the zero temperature mass. Since we assume

that the decaying particle is at rest with respect to the plasma, and T ' mψ, k is a soft

momentum with scaling k ∼ T .

The scale hierarchy T ' mψ allows us to separate the hard decay process from the

effects of the thermal bath by performing the OPE of the correlation function (2.3). The

short-distance physics is encoded in the Wilson coefficients, which can be computed at zero

temperature, while the thermal modifications are all encoded in the matrix elements of local

operators computed in the thermal bath. The situation is analogous to the calculation of
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)

The cross section can be written as the Im part of the forward scattering amplitude:

the difference of the mass-squares is O(T 2), it contributes to a higher-order correction, and

both can be identified. The above expressions can be simplified by using p = mψv with

v2 = 1, and v · k⊥ = 0. The straightforward evaluation then results in

Kψ = −
π

6
ατ2 + 2× 0 + 3

π

6
ατ2 +O

(
τ3
)
=
π

3
ατ2 +O

(
τ3
)
, (2.13)

where we defined τ = T/mψ. This has to be multiplied by q2 for a particle with electric

charge q in units of the positron charge. inserting this into (2.8) gives, explicitly,

ΓT = Γ0

(
1−

π

3
αq2τ2

)
+O

(
τ3
)
, (2.14)

in complete agreement with [3].

Comparison with the derivation of this result in [3] highlights the power of the OPE

approach. It also provides a physical interpretation of the correction as a time dilatation

effect due to the average kinetic energy of the particles due to collisions with the photons

of the plasma.

The finite-temperature modification of the decay width of a Majorana fermion [2]

mentioned in the introduction was obtained through effective field theory methods, which

are also based on systematic scale separation. The OPE nevertheless provides a more direct

approach to the inclusive decay width in the same way as the full development of heavy

quark effective theory is not required to compute the 1/M expansion of the inclusive or

semi-leptonic b hadron decay width in QCD.

3 Dark matter annihilation

Effective field theory and the OPE can also be applied to two-particle annihilation in

the thermal medium, provided the temperature is small compared to the annihilating

particles’ mass. This considerably simplifies the diagrammatic analysis of [4] and provides

an understanding of the temperature scaling of the leading thermal correction. Although

the method is general, we discuss below the annihilation of a heavy, electrically neutral

Dirac fermion into a pair of light charged fermions (mf # T ), and refer to the heavy

fermion as the “dark matter” particle to establish contact with [4].

We assume at first that the annihilation process χχ̄ → f f̄ occurs through the local

four-fermion operator

Oann =
1

Λ2
(χ̄ΓAχ) (f̄ Γ′

Af) , (3.1)

where 1/Λ2 is an unspecified coefficient of mass dimension −2, and ΓA, ΓA,′ are Dirac

matrices, which may be multiplied by up to one covariant derivative.

The total spin-averaged annihilation cross section in the thermal background follows

from the optical theorem,

σvrel =
2

s
Im

{
(−i)

∫
d4x

1

4

∑

spin

〈χ̄χ;T | T
{
Oann(0)O†

ann(x)
}

|χ̄χ;T 〉
}
, (3.2)

[• Q2 Added (−i) since i times the forward amplitude is the operator product,

and σ is the imaginary part of the forward amplitude. This makes this eq.
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consistent with (3.3) and the definition of trχµν and the matching equation in

the appendix. Check.] where the state |χ̄χ;T 〉 represents the annihilating pair in the

thermal photon background, p ≡ p1 + p2 is the total incoming momentum and s ≡ p2 the

center-of-mass energy squared. Once again, we assume that the center-of-mass frame of the

annihilation is at rest with respect to the plasma, in which case p =
√
s v with v defining

the plasma frame.

Since the annihilating particles do not couple to the thermal bath, the χ field part

of (3.2) is readily done by contracting the fields with the external state, which results in

some tensor LAB. The non-trivial part is the time-ordered product of the fermion current

JA = f̄ Γ′
Af . Since the final state particles are very energetic relative to the soft degrees

of freedom of the plasma, we perform the OPE

− i

∫
d4x e−ip·x T

{
Jµ
A(0)J

ν†
B (x)

}
=
∑

i

Ci
AB(p) · Oi , (3.3)

of which the matrix element within the thermal vacuum |ΩT 〉 needs to be taken. Up to

dimension 4, the operators Oi are constructed from contractions with the metric tensor

and the plasma velocity v of

11 , FαβF γδ , mf f̄ Γf , f̄ Γ iDαf , (3.4)

with Γ a general Dirac matrix in spinor space. Apart from the unit operator there is no

operator of dimension lower than 4. This allows us to deduce immediately that the leading

order thermal correction is at least of the order O(T 4) or O(m2
fT

2).

The thermal matrix elements are easily computed, see Appendix A. The photon

“condensate” is given by

〈ΩT |FαβF γδ |ΩT 〉 =
π2

45
T 4
{(

gαγgβδ − gαδgβγ
)

− 2
(
vα
(
vγgβδ − vδgβγ

)
− vβ

(
vγgαδ − vδgαγ

))}
, (3.5)

The light fermion operator mf f̄ Γf is generated only with Γ = 11 due to parity invariance

and helicity conservation and is suppressed for mf & T (and also for mf ' T , but we do

not consider this limit):

〈ΩT |mf f̄f |ΩT 〉 = O(m2
fT

2) & O(T 4) . (3.6)

The addition of a covariant derivative alleviates the mf suppression. In the limit mf → 0

we obtain [• Q3 Note sign change and change of f and f̄ and derivative acting

now on f . Remember sign from permutation of fermion fields. Check sign here

and in the appendix!]

〈ΩT | f̄ γµiDαf |ΩT 〉 = −
7π2

180
T 4
(
gµα − 4 vµvα

)
. (3.7)

The short-distance coefficients from contracting the χ fields and the OPE depend on

the momenta p1 and p2 of the two annihilating particles. Since p1 + p2 = p =
√
sv,

OA 1 ≡ (pµ1p
ν
2Fµν)

2 , OAn ≡ pµi p
ν
jFαµF

α
ν , Of n ≡ f̄ /pi p

µ
j iDµ f (3.8)
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Possible operators up to dim 4:
Wilson coeffs. 

matched at T=0

Matrix elements: LO

No IR divergence to begin with!

O(↵T 4) O(↵T 4)

No dim 2 operator!

O(↵m2
fT

2)

1
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• The scaling with T is manifest

• Separation of  T=0 and  T-dependent contributions

• Significant simplification of the computations

• Clear physics interpretation: at             effects of thermal kinetic energy

OPE in finite temperature - 

Related EFT approach - 

*Analogy: semi-
leptonic Hb 

decay in QCD

In the Literature:

O(↵⌧2)

the (zero temperature) semi-leptonic decay width [9–11] of a heavy b hadron Hb. The

ψ particle plays the role of the b quark, while the thermal bath substitutes the hadronic

medium of soft light quarks and gluons in Hb. The finite-temperature ψ mass mψ;T is the

analogue of the B-hadron mass, the zero-temperature mass corresponds to the quark mass.

The relevant OPE of the time-ordered product in (2.3) is

− i

∫
d4x e−ip·x T {Jµ(0)Jν†(x)} = Cµν

0 ψ̄ψ + Cµν
2 ψ̄

i

2
σαβF

αβψ +O(m−3
ψ ), (2.4)

where the Wilson coefficients Cµν
0 and Cµν

2 are specific to the particular decay process.

[• Q1 How general is the equation? Can one exclude other 1/m2
ψ operators

beyond tree-level? For any kind of charged particle decay? Into any final state?

I find C2 = 0 at tree-level for the toy model.] However, they depend only on mψv,

and are to be computed by matching at T = 0. Hence only the zero-temperature mass

mψ enters. In general, the background plasma breaks Lorentz invariance and it might

be necessary to keep additional operators, which are not scalars, and have non-vanishing

matrix elements in the thermal bath. However, since we assume that the particle decays

at rest with respect to the plasma, the vector v coincides with the one already introduced

by the particle state itself, and (2.4) for muon decay is the same as appears in [12]. The

neglected term can contribute at most at O(T 3/m3
ψ), which is smaller than the putative

leading thermal correction.

As the second (magnetic) operator does not contribute in an unpolarized medium,

it remains to evaluate the matrix element 〈ψ;T | ψ̄ψ |ψ;T 〉 of the leading operator in the

thermal background. Since this is independent of the short-distance decay, it already follows

here that the thermal correction must be a universal modification of the zero-temperature

decay width. The matrix elements of the OPE in heavy particle states have themselves a

non-trivial 1/mψ expansion. Using the equation of motion, we can write [10]

ψ̄ψ = ψ†/vψ +
1

2m2
ψ

ψ̄ (iD⊥)
2 ψ +

i

4m2
ψ

ψ̄σαβF
αβψ +O(m−3

ψ ), (2.5)

where the transverse covariant derivative is defined as Dµ
⊥ ≡ gµν⊥ Dν ≡ (gµν − vµvν)Dν .

The usefulness of this equation stems from the fact that the first term is related to a

conserved current, and hence is matrix element is known exactly,

〈ψ;T | ψ̄γµψ |ψ;T 〉 = vµ (2.6)

from which it follows that

T µν = Cµν
0

(

1 +
1

2m2
ψ

〈ψ;T | ψ̄ (iD⊥)
2 ψ |ψ;T 〉

)

+O(m−3
ψ ). (2.7)

Therefore the leading thermal correction is a direct effect of the matrix element of the

kinetic energy operator Ok ≡ −ψ̄ (iD⊥)2

2m2
ψ

ψ evaluated in the thermal background. We may

interpret Kψ = 〈ψ;T |Ok|ψ;T 〉 as the average kinetic energy of the ψ particle acquired by

the interactions with the photons in the plasma. By dimensional analysis Kψ = O(T 2/m2
ψ).
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Figure 1. The diagrams defining the one-loop contributions K1, K2 and K3, respectively, to the
kinetic operator matrix element. The filled square represents the operator insertion and diagrams
1 and 2 involve the usual QED vertices aside from the operator vertex.

Since Γ0 ≡ λ2Lµν 2 Im {Cµν
0 } is the zero-temperature width, the decay width at finite

temperature reads

ΓT = Γ0 (1−Kψ) +O(T 3/m3
ψ). (2.8)

This derivation explains in a rather straightforward manner three observations originally

made in [3]: 1) that soft and collinear divergences cancel in the sum of virtual correc-

tions and emission and absorption processes, 2) the leading finite-temperature correction

is O(T 2/m2
ψ), and 3) a universal factor multiplying the tree-level decay width.1

In contrast to QCD analogue of the semi-leptonic decay of Hb, where the soft physics

is non-perturbative, the matrix element Kψ of the kinetic operator in the thermal plasma

can easily be computed perturbatively. The one-loop diagrams are depicted in Fig. 1, in

terms of which the matrix element is given by the sum Kψ = K1 + 2K2 +K3. Since we

are interested in the temperature-dependent correction, we retain only the thermal part of

the equilibrium photon propagator

iD11
µν(x, y) = 〈Ω;T | T {Aµ(x)Aν(y)} |Ω;T 〉

=

∫
d4k

(2π)4
e−ik·(x−y) (−2π)gµνδ(k

2) fB(k
0), (2.9)

where fB(k0) = (e|k
0|/T − 1)−1 is the Bose-Einstein distribution of the photons in the

rest frame of the plasma. Writing down the diagrams explicitly, we find the spin-averaged

matrix elements

K1 =
i(ie)2

2m2
ψ

∫
d4k

(2π)4
iD11

αβ(k)
1

4mψ
tr

[
(/p+mψ)γ

α 1

/p− /k −mψ

(−i) (p⊥− k⊥)
2γβ

1

/p− /k −mψ

]
, (2.10)

K2 =
i(ie)2

2m2
ψ

∫
d4k

(2π)4
iD11

αβ(k) (2p⊥ + k⊥)
β 1

4mψ
tr

[
(/p+mψ)γ

α 1

/p− /k −mψ

]
, (2.11)

K3 =
i(ie)2

2m2
ψ

∫
d4k

(2π)4
iD11

αβ(k) (−igαβ⊥ )
1

4mψ
tr
[
/p+mψ

]
. (2.12)

Note that the particle mass in the thermal background, mψ,T , rather than the Lagrangian

mass mψ should be used in the evaluation of the low-energy matrix elements, but since

1It is worth noting that at O(T 4), more operators contribute and the matching coefficients depend on

more details of the hard process. Nevertheless, the temperature-dependent part arises from matrix elements

of local operators and the OPE greatly simplifies the calculation of such sub-leading terms.
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Example: muon decay in thermal bath*

O(↵⌧2)LO …and the final correction:

     Biondini, Brambilla, Escobedo, Vairo ’13; … 

Hatsuda, Koike, Lee ’93;   Mallik ’97; …

     Czarnecki et al. ’11

of the (zero-temperature) semi-leptonic decay width [9–11] of a heavy b-hadron Hb. The

ψ particle plays the role of the b quark, while the thermal bath substitutes the hadronic

medium of soft light quarks and gluons in Hb. The finite-temperature ψ mass mψ;T is the

analogue of the B-hadron mass, the zero-temperature mass corresponds to the quark mass.

The relevant OPE of the time-ordered product in (2.3) is

− i

∫
d4x e−ip·x T {Jµ(0)Jν†(x)} = Cµν

0 ψ̄ψ + Cµν
2 ψ̄

i

2
σαβF

αβψ +O(m−3
ψ ), (2.4)

where the Wilson coefficients Cµν
0 and Cµν

2 are specific to the particular decay process.

However, they depend only on mψv, and are to be computed by matching at T = 0. Hence

only the zero-temperature mass mψ enters. In general, the background plasma breaks

Lorentz invariance and it might be necessary to keep additional operators, which are not

scalars, and have non-vanishing matrix elements in the thermal bath. However, since we

assume that the particle decays at rest with respect to the plasma, the vector v coincides

with the one already introduced by the particle state itself, and (2.4) for muon decay is the

same as appears in [12]. The neglected term can contribute at most at O(T 3/m3
ψ), which

is smaller than the putative leading thermal correction.

As the second (magnetic) operator does not contribute in an unpolarized medium,

it remains to evaluate the matrix element 〈ψ;T | ψ̄ψ |ψ;T 〉 of the leading operator in the

thermal background. Since this is independent of the short-distance decay, it already follows

here that the thermal correction must be a universal modification of the zero-temperature

decay width. The matrix elements of the OPE in heavy particle states have themselves a

non-trivial 1/mψ expansion. Using the equation of motion, we can write [10]

ψ̄ψ = ψ̄/vψ +
1

2m2
ψ

ψ̄ (iD⊥)
2 ψ +

i

4m2
ψ

ψ̄σαβF
αβψ +O(m−3

ψ ), (2.5)

where the transverse covariant derivative is defined as Dµ
⊥ ≡ gµν⊥ Dν ≡ (gµν − vµvν)Dν .

The usefulness of this equation stems from the fact that the first term is related to a

conserved current, and hence is matrix element is known exactly,

〈ψ;T | ψ̄γµψ |ψ;T 〉 = vµ (2.6)

from which it follows that

T µν = Cµν
0

(
1 +

1

2m2
ψ

〈ψ;T | ψ̄ (iD⊥)
2 ψ |ψ;T 〉

)
+O(m−3

ψ ). (2.7)

Therefore the leading thermal correction is a direct effect of the matrix element of the

kinetic energy operator Ok ≡ −ψ̄ (iD⊥)2

2m2
ψ

ψ evaluated in the thermal background. We may

interpret Kψ = 〈ψ;T |Ok|ψ;T 〉 as the average kinetic energy of the ψ particle acquired by

the interactions with the photons in the plasma. By dimensional analysis Kψ = O(T 2/m2
ψ).

Since Γ0 ≡ λ2Lµν 2 Im {Cµν
0 } is the zero-temperature width, the decay width at finite

temperature reads

ΓT = Γ0 (1−Kψ) +O(T 3/m3
ψ). (2.8)

– 3 –



1. how the (soft and collinear) IR divergence cancellation 
happen?                                                                       
automatic in thermal QFT formalism, cancellation at the level 
of every CTP self-energy

2. does Boltzmann equation itself receive quantum corrections?   
no, not at NLO                                                   

3. how large are the remaining finite T corrections?                  
strongly suppressed, of order 
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SUMMARY: PART II

Exception N+1: 
LO sometimes is not enough 

(and then in principle          QFT needed)
 ...but in practice one can safely use BE with NLO cross-section

O(↵T 4)

T 6= 0



TAKEAWAY MESSAGE
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”Everything should be made as simple as possible, but no simpler.”

*The published quote reads:
”It can scarcely be denied that the supreme goal of all theory is to make the 
irreducible basic elements as simple and as few as possible without having to 
surrender the adequate representation of a single datum of experience.” 
„On the Method of Theoretical Physics" ,The Herbert Spencer Lecture, delivered at 
Oxford (10 June 1933); also published in Philosophy of Science, Vol. 1, No. 2 (April 1934), 
pp. 163-169., p. 165

Albert Einsteinattributed to*

When computing relic density of 
dark matter one needs carefully 

to check if the standard 
treatment is sufficient for the 

case at hand



BACKUP
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