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FIG. 1. Constraints on the velocity-weighted annihilation cross section h�vi for the W+W� (left panel) and ⌧+⌧� (right
panel) channels derived from the H.E.S.S. observations taken from 2014 to 2020. The constraints are expressed as 95% C. L.
upper limits including the systematic uncertainty on h�vi as a function of the DM mass mDM. The observed limit is shown
as black solid line. The mean expected limit (black dashed line) together with the 68% (green band) and 95% (yellow band)
C.L. statistical containment bands are shown. The mean expected upper limit without systematic uncertainty is also shown
(red dashed line). The horizontal grey long-dashed line is set to the value of the natural scale expected for the thermal-relic
WIMPs. The constraints obtained in the bb̄, tt̄, ZZ, hh, µ+µ� and e+e� channels are given in Fig. 3 of Ref. [15].
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NON,ij and NOFF,ij are the number of measured events in
the ON and OFF regions, respectively, in the spectral bin
i and in the spatial bin j. NB

ij
is the expected number of

background events in the (i, j) bin for the ON and OFF
regions. NS

ij
and NS

0

ij
are the total number of DM events

in the (i, j) bin for the ON and OFF regions, respectively.
It is obtained by folding the expected DM flux given in
Eq.(1) with the energy-dependent acceptance and energy
resolution. The gamma-ray yield dNf

�
/dE� in the chan-

nel f is computed with the Monte Carlo event collision
generator PYTHIAv8.135, including final state radiative
corrections [27]. The J-factor values of each ROI are re-
ported in Tab. III of Ref. [15]. NS

ij
+NB

ij
is the total num-

ber of events in the spatial bin j and spectral bin i. The
systematic uncertainty can be accounted for in the like-
lihood function as a Gaussian nuisance parameter where
�ij acts as a normalisation factor and ��ij

is the width of

1
Estimates of the local DM density show an uncertainty of about

a factor of 2 [18].

the Gaussian function (see, for instance, Refs. [28–30]).
�ij is found by maximizing the likelihood function such
that dLij/d�ij ⌘ 0. A value of 1% for ��ij

is used [15].
In case of no significant excess in the ROIs, con-

straints on h�vi are obtained from the log-likelihood ra-
tio TS described in Ref. [31] assuming a positive signal
h�vi > 0 [15]. We used the high statistics limit in which
the TS follows a �2 distribution with one degree of free-
dom. Values of h�vi for which TS is higher than 2.71 are
excluded at the 95% confidence level (C.L.).

RESULTS

We find no significant excess in any of the ON regions
with respect to the OFF regions. An analysis crosscheck
performed using independent event calibration and re-
construction [32] corroborates the absence of significant
excess. Hence, we derive 95% C.L. upper limits on h�vi.
We explore the self-annihilation of WIMPs with masses
from 200 GeV up to 70 TeV, into the quark (bb̄, tt̄), gauge
bosons (W+W�, ZZ), lepton (e+e�, µ+µ�, ⌧+⌧�) and
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Fig. 46. Planck 2018 constraints on DM mass and annihilation cross-section. Solid straight lines show joint CMB constraints on
several annihilation channels (plotted using di↵erent colours), based on pann < 3.2 ⇥ 10�28 cm3 s�1 GeV�1. We also show the 2�
preferred region suggested by the AMS proton excess (dashed ellipse) and the Fermi Galactic centre excess according to four
possible models with references given in the text (solid ellipses), all of them computed under the assumption of annihilation into bb̄
(for other channels the ellipses would move almost tangentially to the CMB bounds). We additionally show the 2� preferred region
suggested by the AMS/PAMELA positron fraction and Fermi/H.E.S.S. electron and positron fluxes for the leptophilic µ+µ� channel
(dotted contours). Assuming a standard WIMP-decoupling scenario, the correct value of the relic DM abundance is obtained for a
“thermal cross-section” given as a function of the mass by the black dashed line.

We also indicate the regions suggested by the possible DM
interpretation of several anomalies in indirect DM search data.
The 95 % CL preferred region for the AMS anti-proton excess
is extracted from Cuoco et al. (2017b,a). The DM interpretation
of the Fermi Galactic centre excess is very model-dependent
and, as in figure 9 of Charles et al. (2016), we choose to show
four results from the analyses of Gordon & Macias (2013),
Abazajian et al. (2014), Calore et al. (2015), and Daylan et al.
(2016). For the Fermi Galactic centre excess and the AMS anti-
proton excess, we only show results assuming annihilation into
bb̄, in order to keep the figure readable. About 50 % of the region
found by Abazajian et al. (2014) is excluded by CMB bounds,
while other regions are still compatible. The 95 % CL preferred
region for the AMS anti-proton excess is still compatible with
CMB bounds for the bb̄ channel shown in the figure, and we
checked that this is also the case for other channels.

8. Conclusions

This is the final Planck collaboration paper on cosmological pa-
rameters and presents our best estimates of parameters defining
the base-⇤CDM cosmology and a wide range of extended mod-
els. As in PCP13 and PCP15 we find that the base-⇤CDM model
provides a remarkably good fit to the Planck power spectra and
lensing measurements, with no compelling evidence to favour
any of the extended models considered in this paper.

Compared to PCP15 the main changes in this analysis
come from improvements in the Planck polarization analysis,
both at low and high multipoles. The new Planck polariza-
tion maps provide a tight constraint on the reionization op-
tical depth, ⌧, from large-scale polarization (and are consis-
tent with the preliminary HFI polarization results presented
in Planck Collaboration Int. XLVI (2016)). This revision to the
constraint on ⌧ accounts for most of the (small) changes in pa-
rameters determined from the temperature power spectra in this
paper compared to PCP15. We have characterized a number of

systematic e↵ects, neglected in PCP15, which a↵ect the polar-
ization spectra at high multipoles. Applying corrections for these
systematics (principally arising from errors in polarization e�-
ciencies and temperature-to-polarization leakage) we have pro-
duced high multipole TT,TE,EE likelihoods that provide sub-
stantially tighter constraints than using temperature alone. We
have compared two TT,TE,EE likelihoods that use di↵erent as-
sumptions to correct for polarization systematics and find con-
sistency at the <⇠ 0.5� level. Although the TT,TE,EE likelihoods
are not perfect, the Planck parameter results presented in this pa-
per can be considered accurate to within their error bars.

Our main conclusions include the following.
• The 6-parameter base-⇤CDM model provides a good fit to

the Planck TT, TE, and EE power spectra and to the Planck
CMB lensing measurements, either individually or in combina-
tion with each other.
• The CMB angular acoustic scale is measured robustly at

0.03 % precision to be ✓⇤ = (0.�5965 ± 0.�0002), and is one of
the most accurately measured parameters in cosmology, of com-
parable precision to the measurement of the background CMB
temperature (Fixsen 2009).
• The Planck best fit base-⇤CDM cosmology is in very good

agreement with BAO, supernovae, redshift-space distortion mea-
surements and BBN predictions for element abundance observa-
tions. There is some tension (at about 2.5�) with high-redshift
BAO measurements from quasar Ly↵ observations, but no stan-
dard extension of the base-⇤CDM cosmology improves the fit
to these data.
• The new low-` polarization likelihood tightens the reioniza-

tion optical depth significantly compared to the 2015 analysis,
giving ⌧ = 0.054 ± 0.007, suggesting a mid-point reionization
redshift of zre = 7.7 ± 0.7. This is consistent with astrophysi-
cal observations of quasar absorption lines and models in which
reionization happened relatively fast and late. We investigated
more general models of reionization and demonstrated that our
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Figure 3. 95% CL observed and expected exclusion regions in Mmed�mDM plane for di↵erent /ET

based DM searches from CMS in the lepto-phobic Axial-vector model. Following the recommendation
of the LHC DM working group [1, 2], the exclusions are computed for a universal quark coupling
gq = 0.25 and for a DM coupling of gDM = 1.0. It should also be noted that the absolute exclusion
of the di↵erent searches as well as their relative importance, will strongly depend on the chosen
coupling and model scenario. Therefore, the exclusion regions, relic density contours, and unitarity
curve shown in this plot are not applicable to other choices of coupling values or model.
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Figure 17: Results for the signal-to-noise ratio for LISA (left panel) and AEDGE (right panel) for the
predicted GW signal. The black line corresponds to the points that reproduce the measured DM relic
abundance and also evade the DM direct detection experimental constraints.

Figure 18: Predictions for spectra of gravitational waves together with integrated sensitivity curves for
LISA, AEDGE, ET and LIGO for the points in the parameter space where DM relic abundance is satu-
rated.

parameters gX and MX at µ = MX . Then we use the one-loop potential with running couplings and
fields to move to another scale, at which we perform the computations. The dependence on the scale
is dramatic, especially when scales below the electroweak scale are considered. The VEV varies from
approximately 1TeV at µ = 10GeV to about 20 TeV at µ = MX . If one recalls that the energy released
during the phase transition scales as w4, it is clear that the results for the PT and GW have to depend
on the renormalisation scale. Moreover, one cannot simply reject the scales below the EW scale from
consideration, since these are the scales around which the tunnelling takes place, see figure 4. The right
panel of figure 19 shows the dependence of the nucleation temperature on the RG scale – Tn varies between
around 1GeV when computed around MX (and goes down to approximately 0.1 GeV for higher scales) to
77GeV slightly below MZ .

Next, motivated by these results, we perform scans of the parameter space, analogous to what has been
discussed in section 6, but at fixed µ. This will tell us how our understanding of the parameter space and
observability of the GW signal depends on the renormalisation scale. Figure 20 shows the results for the
key PT parameters (Tp – upper panel and log10 ↵⇤ – lower panel) computed at different scales (µ = MX

(left), µ = MZ (right)) together with the constraints on the parameter space (for an explanation of these
constraints see section 4.1). The upper row, showing the percolation temperature, indicates a striking
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DARK MATTER IS UBIQUITOUS!

Thermal relic density line/region is a very common thing to highlight!
(quite possibly in your work as well)

(a) (b)

Figure 7: (a) Marginalized 2D posterior distribution for the CMSSM with µ > 0 in the (m�, �
SI
p ) plane.

The red solid line shows the 90% C.L. upper bound as given by LUX, here included in the likelihood function.

The gray dot-dashed line shows the 2012 XENON100 90% C.L. bound [70] and the magenta dashed line

shows projected sensitivity for 2017 at XENON-1T [103]. (b) Marginalized 2D posterior distribution for

the CMSSM with µ > 0 in the (m�, �v) plane. The magenta dashed line shows the expected sensitivity

of CTA under the assumptions of [36] for a NFW halo profile. The magenta dot-dashed line shows the

corresponding sensitivity with Einasto profile. The dotted black line shows the projected sensitivity of the

CTA expansion considered in [104].

tool for exploration of the CMSSM.

In the CMSSM the largest cross section values, �SI
p ⇠> 10�8 pb, are obtained in the focus

point region. One can see the beginning of the horizontal branch joining the higgsino and

focus point regions, at m� ' 0.7 � 0.8TeV. The e↵ect of the LUX limit in the likelihood

is visible, as the credibility region is cut o↵ rapidly after crossing the 90% C.L. bound,

shown in red. In contrast to [16], this causes the focus point region to be disfavored by

the scan. In the µ < 0 scenario we obtain the same results albeit with the absence of the

A-resonance region. The sign of the µ parameter has little impact on �
SI
p for the neutralino

and the ⇠ 1TeV higgsino region with µ < 0 can also be entirely probed by XENON-1T.

In Fig. 7(b) we show the 2D posterior distribution in the (m�, �v) plane. The node at

�v . 10�28 cm3
/s is the stau-coannihilation region, which has a much reduced �v in the

present day due to the absence of co-annihilations with the stau NLSP, which are instead

only present in the early Universe. The A-resonance and ⇠ 1TeV higgsino regions are

visible at larger �v, from left to right, respectively. The A-resonance region is characterized

by a broad range of cross section values, with a deep funnel at 95% credibility that extends

down to �v ' 10�28 cm3
/s. This corresponds to a large resonant e↵ect in the early Universe

when the neutralinos are distributed thermally, but the present value of �v is small since

the colliding neutralinos have insu�cient energy to produce the pseudoscalar on shell (see,

e.g., Appendix B in [31]). �v is reduced by orders of magnitude in this funnel and is

– 16 –
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CHAPTER I: 
PARTICLE PHYSICS EFFECTS



seminal papers
Hisano et al. ’04,’06,….force carriers in the MSSM:

γ, W±, Z0, h0

1, h
0

2, H
±

W+

χ0

χ0
χ−

χ+ χ0 χ0 χ+ χ0

Z0, h0 · · ·
W+ W+

γ

H+ H+
Z0

h0

χ+χ+

δm ! mχ

mχ ! mW

7

THE SOMMERFELD EFFECT 
FROM EW INTERACTIONS



seminal papers
Hisano et al. ’04,’06,….force carriers in the MSSM:

γ, W±, Z0, h0

1, h
0

2, H
±

W+

χ0

χ0
χ−

χ+ χ0 χ0 χ+ χ0

Z0, h0 · · ·
W+ W+

γ

H+ H+
Z0

h0

χ+χ+

δm ! mχ

mχ ! mW

)at TeV scale generically effect of O(1� 100%)

on top of that resonance structure

effect of O(few)
for the relic density

7

THE SOMMERFELD EFFECT 
FROM EW INTERACTIONS

AH, R. Iengo, P. Ullio. ’10
AH ’11
AH et al. ’17, M. Beneke et al.; ’16

can be understood as being close to 
a threshold of lowest bound state



12

 [TeV]DMm
0.6 1 2 3 4 5 6 10 20 30 100

]-1 s3
 [c

m
lin

e
〉

 v
σ〈

30−10

29−10

28−10

27−10

26−10

25−10

Einasto, 500 h

Forecast Wino limits

H.E.S.S.-like
Th

er
m

al
 W

in
o 

D
M

σExpected limits, 2
σExpected limits, 5

 bandσ1
 bandσ2

NLL cross section

 (TeV)DMm
0.7 1 2 3 4 5 6 10 20 30 100

]-1 s3
 [c

m
lin

e
〉

 v
σ〈

30−10

29−10

28−10

27−10

26−10

25−10

Einasto  = 0.3 kpccr

 = 0.5 kpccr  = 1 kpccr

 = 2 kpccr  = 5 kpccr

NLL prediction

Forecast Wino limits - Core size

Residual background only

Figure 4. Expected upper limits at 95% C.L on the Wino annihilation cross section as a function of its mass for 500 h of CTA
observations towards the GC. The predicted NLL cross section is shown (solid gray line) and the thermal Wino DM mass is
marked (cyan solid line and bands). The only background considered here is the residual background. The full Wino spectrum
is included in the expected signal. Left panel: Mean expected upper limits at 2� (red solid line) for an Einasto profile are shown
together with the 1� (green band) and 2� (yellow band) containment bands. Mean expected upper limits at 5� (red dashed
line) are also shown. The H.E.S.S.-like 2� sensitivity extracted from Ref. [68] is shown as a blue solid line. Right panel: The
expected limits are shown for cored DM profiles of size from 300 pc to 5 kpc.

lower 1� expected limit. Accordingly, in Figs. 4 and 6,
we only show the lower 1� expected limit, as the actual
limit, by construction, cannot go below this. We also
compute the 5� mean expected upper limit on h�viline,
which corresponds to q ⇡ 23.7.

The above prescription outlines how to determine the
limit for a given dataset m�,ijk, which could be either ob-
tained from real observations or via Monte Carlo simu-
lations.

Before CTA’s first light, we can estimate the expected
sensitivity by generating a large number of Monte Carlo
datasets and determining the mean expected limit and
associated containment bands. An alternative to this ap-
proach, which we will use in this work, is to instead deter-
mine all of these quantities using the Asimov formalism of
Ref. [116]. Under the Asimov approach, instead of taking
many realizations of the model, calculating the limit each
time, and then determining the mean of those values, we
instead take the mean dataset, which is exactly given
by the model. The model, when used as the dataset, is
then referred to as the Asimov dataset. Of course, as
the model is not strictly an integer, this requires analyt-
ically continuing the Poisson distribution to non-integer
values, which can be accomplished using the � function.
The Asimov approach can also be used to determine the
confidence intervals. In detail, to determine the N -sigma
containment band, instead of evaluating q = 2.71, we

calculate

q =
�
��1(0.95)±N

�2
. (19)

Here � is the cumulative distribution function for the
standard normal, which has µ = 0 and � = 1. Accord-
ingly ��1(0.95) ⇡ 1.64, so that the above result contains
the mean limit as a special case at N = 0.

In the idealized scenario we consider here of data
drawn from a background model known exactly, the
above procedure for calculating limits is su�cient. We
emphasize, however, that when considering the actual
CTA data, our models will be inevitably imperfect. One
consequence of this is that the coverage of our limits, and
the validity of discovery thresholds can deviate from the
simple asymptotic estimates used above, and may need
to be validated and potentially tuned using datasets that
contain an injected signal.

V. RESULTS AND PROSPECTS

A. Sensitivity to Wino DM and impact of the
endpoint contribution

The CTA sensitivity forecast for Wino DM, expressed
as the mean expected upper limit at 95% C.L. on h�viline
as a function of the Wino mass, is shown in the left panel
of Fig. 4, together with the expected containment bands

resonance moves 
to the right

w.r.t. pure wino
actual 

cross section

correct RD can be achieved: 
when varying sfermion masses

similar study, pure Wino case: Ibe et al. ’15  

Beneke, …AH, … et al., ’16

8

THE SOMMERFELD EFFECT 
INDIRECT DETECTION

Slatyer et al., ’21



DM bound statefree DM states

BOUND STATE FORMATION

X1

X2

¨ ¨ ¨ ¨ ¨ ¨ B

g

C⌫

Figure 1a: The amplitude for the radiative capture consists of the (non-perturbative) initial and final
state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.

rC⌫saii1,jj1 “
i

j

⌘1K ` q

⌘2K ´ q

a, ⌫
b, ⇢

c, µ

Pg

⌘1P ` p

⌘2P ´ p

i1

j1

` `

Figure 1b: The leading order diagrams contributing to the radiative capture into bound states via gluon
emission. The external-momentum, colour-index and space-time-index assignments are the same in all
three diagrams.

that appear in eq. (2.16), q0 and p0 are determined by the poles of C⌫ , upon the integration denoted
in eq. (2.17). The total 4-momenta of the scattering state, the bound state and the radiated gluon,
K, P and Pg respectively, essentially contain all the (discrete and continuous) quantum numbers that
fully specify the system. In the non-relativistic regime, they can be expressed as

K “
ˆ
M ` K2

2M
` Ek, K

˙
, (2.19a)

P “
ˆ
M ` P2

2M
` En`, P

˙
, (2.19b)

Pg “ p!, Pgq , (2.19c)

where Ek “ k2{p2µq “ µv2rel{2 is the kinetic energy of the scattering state in the CM frame, with
vrel being the relative velocity of the interacting particles, and En` † 0 is the binding energy of the
bound state. Note that Mn` ” M ` En` is the mass of the bound state. For a Coulomb potential,
En` “ ´2{p2n2µq, with  ” µ↵B

s (cf. appendix A). Energy-momentum conservation, K “ P ` Pg,
implies

! “ |Pg| » Ek ´ En` . (2.20)

The leading order contributions to rC⌫saii1,jj1 are shown in fig. 1b. We compute them next using
the Feynman rules from [55].

Emission from the mediator

ipC⌫
medqaii1,jj1 “ S1p⌘1P ` pq

“
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
‰
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq r´igs pT c
2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµsS2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫
`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

7

9

*the effect was first studied in simplified models with light mediators, then gradually 
extended to non-Abelian interactions, double emissions, co-annihilations, etc.

see papers by K. Petraki et al. ’14-19

As noticed before Sommerfeld effect has 
resonances when Bohr radius ~ potential range, 

i.e. when close to a bound state threshold

Can DM form 
actual bound states from such 

long range interactions?

Yes, it can!

Q:  How to describe such bound states and their formation?

**vide also ”WIMPonium”
March-Russel, West ’10
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EXAMPLE:
IMPACT ON THE UNITARITY BOUND

Conservation of probability
(for any partial wave)

3

with BR(Bi ! SM) =
�ann

�ann + �break

=

"
1 +

h�Ivrelig2� M3

DM
e�z EBI

/MDM

2gI (4⇡z)3/2 �ann

#�1

, (3)

where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,

YDM(1) =
1

�

 Z 1

zf

h�e↵vreli(z)

z2
dz +

h�e↵vreli(zf )

z2f

!�1

,

(4)

with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln

✓
2g�h�e↵vreli(zf )�

(2⇡zf )3/2

◆
. (5)

For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10) re-
duction. This is not surprising, since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by

(�vrel)
J
total

< (�v)J
max

=
4⇡(2 J + 1)

M2

DM
vrel

. (6)

Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state for-
mation. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

)

Griest and Kamionkowski ’89

) upper limit on DM mass if thermally produced: MDM < 340 TeV

With the bound state annihilation taken into account:

(see also von Harling, Petraki ’14, Cirelli et al. ’16, …)

(for a Majorana 
fermion and )Ωh2 = 1

” ”

3

with BR(Bi ! SM) =
�ann

�ann + �break

=

"
1 +

h�Ivrelig2� M3

DM
e�z EBI

/MDM

2gI (4⇡z)3/2 �ann

#�1

, (3)

where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,

YDM(1) =
1
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 Z 1

zf

h�e↵vreli(z)

z2
dz +

h�e↵vreli(zf )

z2f

!�1

,

(4)

with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln

✓
2g�h�e↵vreli(zf )�

(2⇡zf )3/2

◆
. (5)

For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10)
reduction. This is not surprising since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by

(�vrel)
J
total

< (�v)J
max

=
4⇡(2 J + 1)

M2

DM
vrel

. (6)

Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state forma-
tion [49]. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

but some of the bound states dissociate 
before they are able to annihilate! )

3

with BR(Bi ! SM) =
�ann

�ann + �break

=

"
1 +

h�Ivrelig2� M3

DM
e�z EBI

/MDM

2gI (4⇡z)3/2 �ann

#�1

, (3)

where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,

YDM(1) =
1

�

 Z 1

zf

h�e↵vreli(z)

z2
dz +

h�e↵vreli(zf )

z2f

!�1

,

(4)

with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln

✓
2g�h�e↵vreli(zf )�

(2⇡zf )3/2

◆
. (5)

For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10)
reduction. This is not surprising since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by

(�vrel)
J
total

< (�v)J
max

=
4⇡(2 J + 1)

M2

DM
vrel

. (6)

Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state forma-
tion [49]. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

overestimates the cross 
section in the Boltzmann eq.

)

maximal attainable mass for 
thermal DM is lower)

Smirnov, Beacom ’19

MDM < 144 TeV
(for a Majorana fermion 

coupled vis SU(2)L)

MDM < 200 TeV(updated)



CHAPTER II: 
NON-EQUILIBRIUM EFFECTS
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freeze-out 

DM in full equilibrium

chemical decoupling
timeT

kinetic decouplingΓscatt ∼ H
Γann < H

Γann ∼ H

Γann > H

THERMAL RELIC DENSITY  
STANDARD SCENARIO

(chemical and kinetic)
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time evolution of         in kinetic theory: 

freeze-out 

DM in full equilibrium

chemical decoupling
timeT

no
n-

eq
uil

ibr
ium

f�(p)

E (@t �H~p ·r~p) f� = C[f�]
the collision termLiouville operator in 

FRW background

kinetic decouplingΓscatt ∼ H
Γann < H

Γann ∼ H

Γann > H

THERMAL RELIC DENSITY  
STANDARD SCENARIO

(chemical and kinetic)



THERMAL RELIC DENSITY  
STANDARD APPROACH
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*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

E (@t �H~p ·r~p) f� = C[f�]
Boltzmann equation for        :f�(p)



THERMAL RELIC DENSITY  
STANDARD APPROACH

13

*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

E (@t �H~p ·r~p) f� = C[f�])

Boltzmann equation for        :

integrate over p 
(i.e. take 0th moment)

f�(p)
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integrate over p 
(i.e. take 0th moment)
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THERMAL RELIC DENSITY  
STANDARD APPROACH

13

*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

Critical assumption: 
kinetic equilibrium at chemical decoupling

E (@t �H~p ·r~p) f� = C[f�])

Boltzmann equation for        :

integrate over p 
(i.e. take 0th moment)

f�(p)

)

fχ ∼ a(T ) f eq
χ



EARLY KINETIC DECOUPLING?
A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

14
D)    Multi-component dark sectors

e.g., additional sources of DM from late decays, …
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HOW TO GO BEYOND KINETIC EQUILIBRIUM?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilations

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in the full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution
no constraining assumptions

numerically challenging
often an overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically
manifestly captures all of the relevant physics

finite range of validity
no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

y ⌘ m�T�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T� ⌘ g�

3m�n�

Z
d
3
p

(2⇡)3
p
2
f�(p) (24)

2

…fB
E cBE



https://drake.hepforge.org

Prediction for the DM 
phase space distribution

Late kinetic decoupling 
and impact on cosmology

see e.g., 1202.5456

Interplay between chemical and 
kinetic decoupling

Applications:

DM relic density for 
any (user defined) model

*

*

at the moment for a single DM species and w/o 
co-annihlations… but stay tuned for extensions! 16

…

(only) prerequisite:  
 Wolfram Language (or Mathematica)

NEW TOOL! 
GOING BEYOND THE STANDARD APPROACH

https://drake.hepforge.org
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EXAMPLE:
FORBIDDEN DARK MATTER

DM is a thermal relic that annihilates only to heavier states 
(forbidden in zero temperature)

�ann/H

�/H

1

�ann/H

�/H

1

kinetic and chemical 
decoupling close

Annihilation 
threshold

velocity 
dependence

”heavy” SM 
particle

scattering 
rate low

…, D’Agnolo, Ruderman ’15, …

2
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1) forbidden annihilations:

2) self-interactions: 4) direct detection:

3) indirect detection:
m < m�d
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D = Hmgd - myL ê my

W
y
h2

Forbidden Relic Density
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FIG. 1. The left panel contains Feynman diagrams relevant for (1) the relic density, (2) self-interactions, (3) indirect detection,
and (4) direct detection. The right panel shows the relic density, ⌦ h

2, as a function of the mass splitting � ⌘ (m�d �m )/m .
The red (blue) curves correspond to m = 1 GeV (MeV) and the solid (dashed) curves correspond to ↵d = 0.1 (10�3).

Relic Density: The relic density of Forbidden DM is
determined by the solution of its Boltzmann equation,

ṅ + 3Hn = �
⌦
�  ̄ v

↵
n

2
 + h��d�d vi (neq

�d
)2, (2)

where n ,�d are the number densities, H is the Hubble
parameter, h�  ̄(�d�d) vi denotes the thermally averaged
(inverse-)annihilations, and we have assumed that �d re-
mains in equilibrium during freeze-out. The solution is
approximately given by Eq. (1), with the annihilation
rate given by

⌦
�  ̄ v

↵
. For simplicity, Eq. (1) neglects

the dependence on the number of relativistic degrees of
freedom and the freeze-out temperature. These e↵ects
are included in our numerical results (for a more precise
analytic treatment see Refs. [1, 23]).

We now introduce a new and simple prescription for
computing the thermal average of the forbidden annihi-
lation rate. Detailed balance states that the right-hand
side of Eq. (2) vanishes in equilibrium, n = n

eq
 . There-

fore, the forbidden annihilation rate is related to the rate
of the inverse process, which proceeds at 0 temperature,
h��d�d vi ⇠ ↵

2
d/m

2
�d

. We find,

⌦
�  ̄ v

↵
=

(neq
�d

)2

(neq
 )2

h��d�d vi ⇡ 8⇡f�
↵

2
d

m
2
 

e
�2�x

, (3)

where � ⌘ (m�d � m )/m is the rela-
tive mass splitting, x ⌘ m /T , and f� ⌘�
�3/2(2 + �)3/2(2 + �(2 + �)

�
/(1 + �)4. The ex-

ponential suppression comes from the form of the
equilibrium number density for non-relativistic species,
neq = g(mT/2⇡)3/2 exp(�m/T ), where g = 2 (3) for
 (�d), and we have assumed zero chemical potential.
Note that the approximation of the forbidden cross sec-
tion in Ref. [8] has an incorrect exponential dependence
on �x.

We obtain the forbidden relic density by plugging
Eq. (3) into Eq. (1) and integrating the cross section

from freeze-out to the present in order to account for
annihilations after freeze-out (see for example Ref. [23]),

⌦ h
2
⇡ 0.1 g�(xf )

m
2
 /↵

2
d

(20 TeV)2
e
2�xf , (4)

where xf ⌘ m /Tf ⇠ 10 � 25 and g�(xf ) ⌘

(4⇡f�)�1(1 � 2�xfe
2�xf

R 1
2�xf

t
�1

e
�t

dt)�1 is an O(1)

function. Note that we indicate with ⌦ h
2 the total relic

density of  and  ̄. Eq. (4) shows that the forbidden relic
density is exponentially enhanced as � increases. Equiv-
alently, fixing the relic density to the observed value, the
DM mass is exponentially lighter than the weak scale.

We show the relic density, as a function of �, in the
right panel of Fig. 1. Our numerical results here, and
throughout this letter, utilize MicrOMEGASv4 [24] to solve
the Boltzmann equations and we have verified that they
agree with Eq. (4). The left of the figure, � < 0, corre-
sponds to the conventional case where the relic density is
too small for light DM masses. As we enter the forbidden
region, � > 0, the relic density exponentially increases
until it achieves the correct value. The standard lore is
that forbidden channels are only relevant in highly de-
generate scenarios, � ⌧ 1 (this was stated by Ref. [8]
which implicitly assumes weak scale DM). However, we
see from Fig. 1 that light DM calls for an O(1) splitting.

On the left side of Fig. 2, we show the value of � that
corresponds to the observed DM abundance, as a func-
tion of the DM mass. For m > 1 MeV, we assume
that the dark sector is in thermal contact with the SM,
Tdark = TSM . Lighter masses require DM to be ther-
mally decoupled and cooler, Tdark < TSM , due to con-
straints on the number of relativistic degrees of freedom
from Big Bang Nucleosynthesis (BBN) [25, 26] and the
CMB [11]. For m < 1 MeV, we adopt a decoupled dark
sector scenario, consistent with these constraints, that
we describe below. We find that DM masses down to
the keV scale are accommodated (DM with a sub-keV
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FORBIDDEN DARK MATTER
EXAMPLE EFFECT OF EARLY KD ON RELIC DENSITY

effect on relic 
density: 

up to O(~few)

below the 
threshold

above the 
threshold

(…far above the threshold 
- needs non-pert. coupling)
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CFP

Cel

full (numerical) 
scattering term

Fokker-Planck 
approx. for the 
scattering term



DM ELASTIC SCATTERINGS
(WITH ITSELF AND WITH PLASMA PARTICLES)



ELASTIC SCATTERING COLLISION TERM
E (@t �H~p ·r~p) f� = C[f�]

contains both scatterings and annihilations

Cself ∼ ∫ d Π̃ ℳ
2

χχ↔χχ (fχ( p̃)fχ(k̃) − fχ(p)fχ(k))

Cel ∼ ∫ d Π̃ ℳ
2

χ f↔χ f (fχ( p̃)f eq
f (k̃)(1 ± f eq

f (k)) − fχ(p)f eq
f (k)(1 ± f eq

f (k̃)))
χ(p) χ( p̃)

f(k) f(k̃)

χ(p) χ( p̃)

χ(k) χ(k̃)

Cann ∼ ∫ d Π̃ ℳ
2

χχ↔f f̄ (f eq
f ( p̃)f eq

f (k̃) − fχ(p)fχ(k))
χ(p) f( p̃)

χ(k) f(k̃)

d Π̃ = dΠp̃dΠkdΠk̃δ(4)( p̃ + p − k̃ − k)

Annihilation:

El. scattering (on SM particles):

El. self-scattering (DM on DM):

easy easy

mediumhard

easy: no unknown  under integral 

 1D integration

fχ
⇒

medium: no unknown  under integral 

 2-3D integration

fχ
⇒

hard: unknown  under integral 

 2-4D integration

fχ
⇒

hard

An approximate method needed!



APPROACHES

I) Expand in „small momentum transfer”
Bringmann, Hofmann ’06

Kasahara ’09; Binder, Covi, Kamada, Murayama, Takahashi, Yoshida ’16

A.H. & S. Chatterjee, work in progress… 
(on different expansion schemes)

MDM ≫ | ⃗q | ∼ T ≫ mSM

typical momentum transfer

Here, |M|2 is the spin-averaged invariant amplitude squared, and f eq is a thermal distribution,

f eq = (exp{(−p · u− µ)/T} ± 1)−1 (2.5)

with a temperature T " T0(τ)+T1(x), a reference four velocity uµ " (1,u(x)), and a chemical
potential µ.

If the elastic scattering is T -inversion invariant, |M|2’s are identical between the forward
and backward scatterings,

|M(1 + 2 → 3 + 4)|2 = |M(3 + 4 → 1 + 2)|2 = |M|2 . (2.6)

In the presence of four-momentum conservation δ4(p1 + p2 − p3 − p4), thermal distributions
satisfy

f eq
2 (1∓ f eq

4 ) = exp{−(p1 − p3) · u/T}f eq
4 (1∓ f eq

2 ) . (2.7)

From (2.6) and (2.7), we obtain the following relation:

Seq(p1, p3) = exp{−(p1 − p3) · u/T}Seq(p3, p1). (2.8)

Thus, the collision term is

C[f1] =
1

2

∑

s3

∫

d3p3

(2π)32E3
Seq(p3, p1)

[

f3(1∓ f1)− exp{−(p1 − p3) · u/T}f1(1∓ f3)
]

.(2.9)

We can easily check that the above expression satisfies the so-called detailed balance, i.e.,
C[f1] = 0 if f1 = f eq

1 and f3 = f eq
3 , which follows from the T -inversion invariance.

We assume that momentum transfer q̃ = p3 − p1 is smaller than the typical DM mo-
mentum p1i and expand the collision term up to the second order,

f3 " f1 + q̃i
∂f1
∂p1i

+
1

2
q̃iq̃j

∂2f1
∂p1i∂p1j

, exp{−(p1 − p3) · u/T} = 1 +Aiq̃i +Bij q̃iq̃j ,

(2.10)

where

Ai = −
v1i − ui

T
, Bij =

1

2

(

∂Ai

∂p1j
+AiAj

)

, (2.11)

with the velocity of the particle v = p/E. After collecting terms, we obtain

[

f3(1∓ f1)− exp{−(p1 − p3)/T}f1(1∓ f3)
]

" αiq̃i +
1

2

(

∂αi

∂p1j
+ αiAj

)

q̃iq̃j , (2.12)

where

αi =
∂f1
∂p1i

−Aif1(1∓ f1) . (2.13)

The collision term is

C[f1] "
1

2

{

αiβi +
1

2

(

∂αi

∂p1j
+ αiAj

)

γij
}

, (2.14)

– 4 –

δ(3)(p̃ + k̃ − p − k) ≈ ∑
n

1
n!

(q∇p̃)nδ(3)(p̃ − p)

) all lead to Fokker-Planck type eq.
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C[f1] = 0 if f1 = f eq

1 and f3 = f eq
3 , which follows from the T -inversion invariance.

We assume that momentum transfer q̃ = p3 − p1 is smaller than the typical DM mo-
mentum p1i and expand the collision term up to the second order,
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q̃iq̃j
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, exp{−(p1 − p3) · u/T} = 1 +Aiq̃i +Bij q̃iq̃j ,
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where

Ai = −
v1i − ui

T
, Bij =

1

2

(
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+AiAj

)

, (2.11)

with the velocity of the particle v = p/E. After collecting terms, we obtain

[

f3(1∓ f1)− exp{−(p1 − p3)/T}f1(1∓ f3)
]

" αiq̃i +
1
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(

∂αi
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+ αiAj

)

q̃iq̃j , (2.12)

where

αi =
∂f1
∂p1i

−Aif1(1∓ f1) . (2.13)

The collision term is

C[f1] "
1

2

{

αiβi +
1

2

(

∂αi

∂p1j
+ αiAj

)

γij
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δ(3)(p̃ + k̃ − p − k) ≈ ∑
n

1
n!

(q∇p̃)nδ(3)(p̃ − p)

) all lead to Fokker-Planck type eq.

II) Replace the backward term with a simpler one
(i.e. a relaxation-like approximation)

Ala-Mattinen, Kainulainen ’19

Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen ’22

As alluded above, the collision integral corresponding to the first term is a multi-dimensional
convolution over the perturbation, which is typically a smooth function in p even when
�f(p2, t) itself is not a smooth function. The key element of our scheme is to use the free-
dom in choosing the function gm(t): we can in particular adjust it such that integrated elastic
collision term corresponding to the division (3.9) vanishes separately for the forward and back-
ward scattering terms. With this definition the back-reaction term should become a smooth,
low amplitude variation around the actual elastic collision integral, whose integrated effect
should be small. This term we then drop from our equation. We provide more details and an
estimation of the accuracy of this approach by comparison to exact elastic collision integrals
in the appendix C. This corresponds to setting, separately for each elastic collision channel
m:

ĈE,m(p1, t) ! ��f(p1, t)�
m

E (p1, t)

= ( gm(t)feq(p1, t)� f(p1, t) ) �
m

E (p1, t) , (3.10)

where gm(t) is defined to preserve the conservation of particle number in elastic collisions:
Z

d3p1
(2⇡)3

ĈE,m(p1, t) ⌘ 0 ) gm(t) ⌘

R
dp1 p21 f(p1, t)�

m

E (p1, t)R
dp1 p21 feq(p1, t)�

m

E (p1, t)
. (3.11)

The first term in the second line of the equation (3.10) replaces the the back-reaction term
in the original elastic collision integral (3.7). It ensures that ĈE(p1, t) does not change the
particle number and drives the distribution towards the pseudo-equilibrium form (2.4). Note
that both equations (3.10) and (3.11) are essential: without the latter the former would make
no sense.

After some manipulations each elastic rate function �m

E (p1, t) can be written in a similar
manner as Eq. (3.4):

�m

E (p1, t) ⌘ �m

E [fm

eq ; p1, t] =
1

2⇡2

Z 1

0
dp3p

2
3 f

m

eq(p3, t) [vMøl�]
Sm
E (p1, p3) , (3.12)

where we defined, similarly to Eq. (3.5):

[vMøl�]
Sm
E (p1, p3) =

1

8p1p3E1E3

Z
s
m
+

s
m
�

ds�1/2(s,m2
m,m

2
S)�

Sm
E (s) . (3.13)

Here s
m
± = m

2
m + m

2
S + 2E1E3 ± 2p1p3 and �

Sm
E (s) is the usual 2-body elastic cross section

in channel m and the kinetic function �(x, y, z) ⌘ (x� y � z)2 � 4yz. Note that m, S and E
are mere labels in equation (3.13). This expression is actually valid for any initial states ab,
and both for the elastic and the inelastic interactions. In particular equation (3.6) is just a
special case of (3.13), where ab = SS in the annihilation channel.

When applied to the case of self-scatterings of the scalar particles the above reasoning
results to

ĈE,S(p1, t) ⇡ g
2
S(t)feq(p1, t)�

S
E[feq; p1, t]� f(p1, t)�

S
E[f ; p1, t] , (3.14)

where the decay function is defined in Eq. (3.12) with the cross section [vMøl�]SSE and gS is
obtained from the conservation of particle number:

) g
2
S(t) =

R
dp1 p21 f(p1, t)�

S
E[f ; p1, t]R

dp1 p21 feq(p1, t)�
S
E[feq; p1, t]

. (3.15)

– 9 –

) simpler, but generally incorrect
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The first term in the second line of the equation (3.10) replaces the the back-reaction term
in the original elastic collision integral (3.7). It ensures that ĈE(p1, t) does not change the
particle number and drives the distribution towards the pseudo-equilibrium form (2.4). Note
that both equations (3.10) and (3.11) are essential: without the latter the former would make
no sense.
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0
dp3p
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m
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E (p1, p3) , (3.12)

where we defined, similarly to Eq. (3.5):

[vMøl�]
Sm
E (p1, p3) =

1

8p1p3E1E3

Z
s
m
+

s
m
�

ds�1/2(s,m2
m,m

2
S)�

Sm
E (s) . (3.13)

Here s
m
± = m

2
m + m

2
S + 2E1E3 ± 2p1p3 and �

Sm
E (s) is the usual 2-body elastic cross section

in channel m and the kinetic function �(x, y, z) ⌘ (x� y � z)2 � 4yz. Note that m, S and E
are mere labels in equation (3.13). This expression is actually valid for any initial states ab,
and both for the elastic and the inelastic interactions. In particular equation (3.6) is just a
special case of (3.13), where ab = SS in the annihilation channel.

When applied to the case of self-scatterings of the scalar particles the above reasoning
results to

ĈE,S(p1, t) ⇡ g
2
S(t)feq(p1, t)�

S
E[feq; p1, t]� f(p1, t)�

S
E[f ; p1, t] , (3.14)

where the decay function is defined in Eq. (3.12) with the cross section [vMøl�]SSE and gS is
obtained from the conservation of particle number:

) g
2
S(t) =

R
dp1 p21 f(p1, t)�

S
E[f ; p1, t]R

dp1 p21 feq(p1, t)�
S
E[feq; p1, t]

. (3.15)
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) simpler, but generally incorrect

III) Langevin simulations
Kim, Laine ’23

The average velocity can in turn be expressed as
〈

v2
〉

≈ 3T/mϕ, where we have introduced

the notation mϕ for the mass of a generic non-relativistic dark matter particle.

When we implement the Langevin equation in a cosmological context, time and tempera-

ture are not independent variables. If the system does not undergo phase transitions, so that

the temperature evolves smoothly, we may take

x ≡ ln

(
Tmax

T

)

, (...)′ ≡
d(...)

dx
, (2.6)

as a time-like variable (we choose Tmax ≡ 5 GeV). The Jacobian to physical time is

dx

dt
= 3c2sH , (2.7)

where c2s = ∂p/∂e is the speed of sound squared. Furthermore the entropy density, s, satisfies

ṡ+ 3Hs = 0, and consequently sa3 = const. If we now define dimensionless momenta as

p̂i ≡
pi

s1/3
, (2.8)

and denote

η̂ ≡
η

3c2sH
, ζ̂ ≡

ζ

3c2sHs2/3
, (2.9)

then Langevin dynamics can be expressed as

(p̂i)′ = −η̂ p̂i + f̂ i ,
〈

f̂ i(x1) f̂
j(x2)

〉

= ζ̂ δij δ(x1 − x2) . (2.10)

Given the constancy of sa3, we note that p̂i ∝ api ≡ ki, known as a comoving momentum.

A key element of the dynamics is that the coefficients η̂ and ζ̂ are not constant but evolve

rapidly with x. The Hubble rate reads

H =

√

8πe

3m2
pl

, (2.11)

where e is the energy density and mpl ≈ 1.22091×1019 GeV is the Planck mass. Since e ∼ T 4

in the Standard Model plasma, H scales as ∼ T 2. The entropy density scales as s ∼ T 3. The

coefficient ζ is suppressed by the mass of the dark matter particle and that of the mediator

between the visible and dark sectors. For dimensional reasons, we may write it as

ζ ≡
ξ T 7

(100 GeV)4
, (2.12)

with ξ displaying modest temperature dependence. Different contributions to ξ in the scalar

singlet model, derived in appendix A, are shown in fig. 1(left). The speed of sound squared can

often be approximated as 3c2s ' 1, though it experiences corrections when mass thresholds are

3

stochastic term, taking care of detailed balance

) very new,  promising…



APPROACHES

I) Expand in „small momentum transfer”
Bringmann, Hofmann ’06

Kasahara ’09; Binder, Covi, Kamada, Murayama, Takahashi, Yoshida ’16

A.H. & S. Chatterjee, work in progress… 
(on different expansion schemes)

MDM ≫ | ⃗q | ∼ T ≫ mSM

typical momentum transfer

Here, |M|2 is the spin-averaged invariant amplitude squared, and f eq is a thermal distribution,

f eq = (exp{(−p · u− µ)/T} ± 1)−1 (2.5)

with a temperature T " T0(τ)+T1(x), a reference four velocity uµ " (1,u(x)), and a chemical
potential µ.

If the elastic scattering is T -inversion invariant, |M|2’s are identical between the forward
and backward scatterings,

|M(1 + 2 → 3 + 4)|2 = |M(3 + 4 → 1 + 2)|2 = |M|2 . (2.6)

In the presence of four-momentum conservation δ4(p1 + p2 − p3 − p4), thermal distributions
satisfy

f eq
2 (1∓ f eq

4 ) = exp{−(p1 − p3) · u/T}f eq
4 (1∓ f eq

2 ) . (2.7)

From (2.6) and (2.7), we obtain the following relation:

Seq(p1, p3) = exp{−(p1 − p3) · u/T}Seq(p3, p1). (2.8)

Thus, the collision term is

C[f1] =
1

2

∑

s3

∫

d3p3

(2π)32E3
Seq(p3, p1)

[

f3(1∓ f1)− exp{−(p1 − p3) · u/T}f1(1∓ f3)
]

.(2.9)

We can easily check that the above expression satisfies the so-called detailed balance, i.e.,
C[f1] = 0 if f1 = f eq

1 and f3 = f eq
3 , which follows from the T -inversion invariance.

We assume that momentum transfer q̃ = p3 − p1 is smaller than the typical DM mo-
mentum p1i and expand the collision term up to the second order,

f3 " f1 + q̃i
∂f1
∂p1i

+
1

2
q̃iq̃j

∂2f1
∂p1i∂p1j

, exp{−(p1 − p3) · u/T} = 1 +Aiq̃i +Bij q̃iq̃j ,

(2.10)

where

Ai = −
v1i − ui

T
, Bij =

1

2

(

∂Ai

∂p1j
+AiAj

)

, (2.11)

with the velocity of the particle v = p/E. After collecting terms, we obtain

[

f3(1∓ f1)− exp{−(p1 − p3)/T}f1(1∓ f3)
]

" αiq̃i +
1

2

(

∂αi

∂p1j
+ αiAj

)

q̃iq̃j , (2.12)

where

αi =
∂f1
∂p1i

−Aif1(1∓ f1) . (2.13)

The collision term is

C[f1] "
1

2

{

αiβi +
1

2

(

∂αi

∂p1j
+ αiAj

)

γij
}

, (2.14)

– 4 –

δ(3)(p̃ + k̃ − p − k) ≈ ∑
n

1
n!

(q∇p̃)nδ(3)(p̃ − p)

) all lead to Fokker-Planck type eq.

II) Replace the backward term with a simpler one
(i.e. a relaxation-like approximation)

Ala-Mattinen, Kainulainen ’19

Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen ’22

As alluded above, the collision integral corresponding to the first term is a multi-dimensional
convolution over the perturbation, which is typically a smooth function in p even when
�f(p2, t) itself is not a smooth function. The key element of our scheme is to use the free-
dom in choosing the function gm(t): we can in particular adjust it such that integrated elastic
collision term corresponding to the division (3.9) vanishes separately for the forward and back-
ward scattering terms. With this definition the back-reaction term should become a smooth,
low amplitude variation around the actual elastic collision integral, whose integrated effect
should be small. This term we then drop from our equation. We provide more details and an
estimation of the accuracy of this approach by comparison to exact elastic collision integrals
in the appendix C. This corresponds to setting, separately for each elastic collision channel
m:

ĈE,m(p1, t) ! ��f(p1, t)�
m

E (p1, t)

= ( gm(t)feq(p1, t)� f(p1, t) ) �
m

E (p1, t) , (3.10)

where gm(t) is defined to preserve the conservation of particle number in elastic collisions:
Z

d3p1
(2⇡)3

ĈE,m(p1, t) ⌘ 0 ) gm(t) ⌘

R
dp1 p21 f(p1, t)�

m

E (p1, t)R
dp1 p21 feq(p1, t)�

m

E (p1, t)
. (3.11)

The first term in the second line of the equation (3.10) replaces the the back-reaction term
in the original elastic collision integral (3.7). It ensures that ĈE(p1, t) does not change the
particle number and drives the distribution towards the pseudo-equilibrium form (2.4). Note
that both equations (3.10) and (3.11) are essential: without the latter the former would make
no sense.

After some manipulations each elastic rate function �m

E (p1, t) can be written in a similar
manner as Eq. (3.4):

�m

E (p1, t) ⌘ �m

E [fm

eq ; p1, t] =
1

2⇡2

Z 1

0
dp3p

2
3 f

m

eq(p3, t) [vMøl�]
Sm
E (p1, p3) , (3.12)

where we defined, similarly to Eq. (3.5):

[vMøl�]
Sm
E (p1, p3) =

1

8p1p3E1E3

Z
s
m
+

s
m
�

ds�1/2(s,m2
m,m

2
S)�

Sm
E (s) . (3.13)

Here s
m
± = m

2
m + m

2
S + 2E1E3 ± 2p1p3 and �

Sm
E (s) is the usual 2-body elastic cross section

in channel m and the kinetic function �(x, y, z) ⌘ (x� y � z)2 � 4yz. Note that m, S and E
are mere labels in equation (3.13). This expression is actually valid for any initial states ab,
and both for the elastic and the inelastic interactions. In particular equation (3.6) is just a
special case of (3.13), where ab = SS in the annihilation channel.

When applied to the case of self-scatterings of the scalar particles the above reasoning
results to

ĈE,S(p1, t) ⇡ g
2
S(t)feq(p1, t)�

S
E[feq; p1, t]� f(p1, t)�

S
E[f ; p1, t] , (3.14)

where the decay function is defined in Eq. (3.12) with the cross section [vMøl�]SSE and gS is
obtained from the conservation of particle number:

) g
2
S(t) =

R
dp1 p21 f(p1, t)�

S
E[f ; p1, t]R

dp1 p21 feq(p1, t)�
S
E[feq; p1, t]

. (3.15)
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) simpler, but generally incorrect

III) Langevin simulations
Kim, Laine ’23

The average velocity can in turn be expressed as
〈

v2
〉

≈ 3T/mϕ, where we have introduced

the notation mϕ for the mass of a generic non-relativistic dark matter particle.

When we implement the Langevin equation in a cosmological context, time and tempera-

ture are not independent variables. If the system does not undergo phase transitions, so that

the temperature evolves smoothly, we may take

x ≡ ln

(
Tmax

T

)

, (...)′ ≡
d(...)

dx
, (2.6)

as a time-like variable (we choose Tmax ≡ 5 GeV). The Jacobian to physical time is

dx

dt
= 3c2sH , (2.7)

where c2s = ∂p/∂e is the speed of sound squared. Furthermore the entropy density, s, satisfies

ṡ+ 3Hs = 0, and consequently sa3 = const. If we now define dimensionless momenta as

p̂i ≡
pi

s1/3
, (2.8)

and denote

η̂ ≡
η

3c2sH
, ζ̂ ≡

ζ

3c2sHs2/3
, (2.9)

then Langevin dynamics can be expressed as

(p̂i)′ = −η̂ p̂i + f̂ i ,
〈

f̂ i(x1) f̂
j(x2)

〉

= ζ̂ δij δ(x1 − x2) . (2.10)

Given the constancy of sa3, we note that p̂i ∝ api ≡ ki, known as a comoving momentum.

A key element of the dynamics is that the coefficients η̂ and ζ̂ are not constant but evolve

rapidly with x. The Hubble rate reads

H =

√

8πe

3m2
pl

, (2.11)

where e is the energy density and mpl ≈ 1.22091×1019 GeV is the Planck mass. Since e ∼ T 4

in the Standard Model plasma, H scales as ∼ T 2. The entropy density scales as s ∼ T 3. The

coefficient ζ is suppressed by the mass of the dark matter particle and that of the mediator

between the visible and dark sectors. For dimensional reasons, we may write it as

ζ ≡
ξ T 7

(100 GeV)4
, (2.12)

with ξ displaying modest temperature dependence. Different contributions to ξ in the scalar

singlet model, derived in appendix A, are shown in fig. 1(left). The speed of sound squared can

often be approximated as 3c2s ' 1, though it experiences corrections when mass thresholds are

3

stochastic term, taking care of detailed balance

) very new,  promising…

IV) Fully numerical implementation
A.H. & M. Laletin 2204.07078
Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen ’22

(focus on DM self-scatterings)

) doable, but very CPU expensive
Du, Huang, Li, Li, Yu ’21

https://arxiv.org/abs/2204.07078


CHAPTER III: 
MULTI-COMPONENT DARK MATTER
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WHAT IF A NON-MINIMAL SCENARIO?
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DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

In a minimal WIMP case only two types of processes are relevant:

drives number density evolution
(keeping the distribution to be in local thermal eq.)

scatterings typically more frequent

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

Recall: in standard thermal relic density calculation:

Critical assumption: 
kinetic equilibrium at chemical decoupling

f� ⇠ a(µ)f eq
�

crossing sym.



EXAMPLE D:
WHEN ADDITIONAL INFLUX OF DM ARRIVES

24

D)    Multi-component dark sectors

Sudden injection of more DM particles distorts 
(e.g. from a decay or annihilation of other states)

fχ(p)

- this can modify the annihilation rate (if still active)

- how does the thermalization due to elastic scatterings happen?
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also can happen!?

(if increased annihilation)
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DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

nBE (i.e
. en

force
d 

kin
etic

 eq
uilib

riu
m)

fBE (no self-
scatterings)

fBE (with self-
scatterings)

no enhanced 
annihilation, 
more DM in 

the end

some injected 
particles will 

annihilate together 
with themselves and 

cold component

energy redistribution 
will allow more DM 
particles to reach 

energies over 
annihilation threshold 



DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

number densityY ∼ temperaturey ∼ momentum distributionp2 f (p) ∼

EXAMPLE EVOLUTION
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x = 34
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AH, Laletin 2204.07078



SUMMARY

28

2. Kinetic equilibrium is a necessary (often implicit) assumption for 
standard relic density calculations in all the numerical tools…

3. Introduced coupled system of Boltzmann eqs. for 0th and 2nd 
moments (cBE) allows for much more accurate treatment while the 
full phase space Boltzmann equation (fBE) can be also successfully 
solved for higher precision and/or to obtain result for fDM(p)

(we also introduced                            a new tool to extend the current 
capabilities to the regimes beyond kinetic equilibrium)

…while it is not always warranted!

1. In recent years a significant progress in refining the relic density 
calculations (not yet fully implemented in public codes!)



TAKEAWAY MESSAGE
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”Everything should be made as simple as possible, but no simpler.”

*The published quote reads:
”It can scarcely be denied that the supreme goal of all theory is to make the 
irreducible basic elements as simple and as few as possible without having to 
surrender the adequate representation of a single datum of experience.” 
„On the Method of Theoretical Physics" ,The Herbert Spencer Lecture, delivered at 
Oxford (10 June 1933); also published in Philosophy of Science, Vol. 1, No. 2 (April 1934), 
pp. 163-169., p. 165

Albert Einsteinattributed to*

When computing relic density of 
dark matter one needs carefully 

to check if the standard 
treatment is sufficient for the 

case at hand


