DARK MATTER PRODUCTION OUT OF KINETIC EQUILIBRIUM:

LATEST DEVELOPMENTS

Andrzej Hryczuk

Based on:

T. Binder, T. Bringmann, M. Gustafsson & A.H. <u>1706.07433</u>, <u>2103.01944</u>

A.H. & M. Laletin 2204.07078, 2104.05684

work in progress with S. Chatterjee

IN CASE YOU'RE NOT INTERESTED IN WHAT FOLLOWS...

THERMAL RELIC DENSITY

STANDARD SCENARIO

modified expansion rate

assumptions leading to different form of the equation, e.g. violation of kinetic equilibrium

where the thermally averaged cross section:

$$\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3 \vec{p}_{\chi}}{(2\pi)^3} \frac{d^3 \vec{p}_{\bar{\chi}}}{(2\pi)^3} \, \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \, f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$$

THERMAL RELIC DENSITY STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$

integrate over *p* (i.e. take 0th moment)

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...

...for derivation from thermal QFT see e.g., 1409.3049

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel}\rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq}\right)$$

where the thermally averaged cross section:

$$\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3 \vec{p}_{\chi}}{(2\pi)^3} \frac{d^3 \vec{p}_{\bar{\chi}}}{(2\pi)^3} \ \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \ f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$$

1

Critical assumption:

kinetic equilibrium at chemical decoupling

$$f_{\chi} \sim a(T) f_{\chi}^{\text{eq}}$$

FREEZE-OUT VS. DECOUPLING

annihilation

(elastic) scattering

$$\sum_{\text{spins}} \left| \mathcal{M}^{\text{pair}} \right|^2 = F(p_1, p_2, p_1', p_2')$$

$$\sum_{\text{spins}} \left| \mathcal{M}^{\text{scatt}} \right|^2 = F(k, -k', p', -p)$$

Boltzmann suppression of DM vs. SM

scatterings typically more frequent

dark matter frozen-out but typically still kinetically coupled to the plasma

Schmid, Schwarz, Widern '99; Green, Hofmann, Schwarz '05

EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation

i.e. rates around freeze-out: $H \sim \Gamma_{
m ann} \gtrsim \Gamma_{
m el}$

Possibilities:

B) Boltzmann suppression of SM as strong as for DM

e.g., below threshold annihilation (forbidden-like DM)

C) Scatterings and annihilation have different structure

e.g., semi-annihilation, 3 to 2 models,...

D) Multi-component dark sectors

HOW TO GO BEYOND KINETIC EQUILIBRIUM?

All information is in the full BE:

both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$
 contains both scatterings and annihilations

NEW TOOL!

GOING BEYOND THE STANDARD APPROACH

- Home
- Downloads
- Contact

Dark matter Relic Abundance beyond Kinetic Equilibrium

Authors: Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk

DRAKE is a numerical precision tool for predicting the dark matter relic abundance also in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. The code comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution. The code is written in Wolfram Language and includes a Mathematica notebook example program, a template script for terminal usage with the free Wolfram Engine, as well as several concrete example models.

DRAKE is a free software licensed under GPL3.

If you use DRAKE for your scientific publications, please cite

DRAKE: Dark matter Relic Abundance beyond Kinetic Equilibrium,
 Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk, [arXiv:2103.01944]

Currently, an user guide can be found in the Appendix A of this reference. Please cite also quoted other works applying for specific cases.

v1.0 « Click here to download DRAKE

(March 3, 2021)

https://drake.hepforge.org

Applications:

DM relic density for any (user defined) model*

Interplay between chemical and kinetic decoupling

Prediction for the DM phase space distribution

Late kinetic decoupling and impact on cosmology

see e.g., 1202.5456

. . .

(only) prerequisite: Wolfram Language (or Mathematica)

FEW WORDS ABOUT THE CODE

written in Wolfram Language, lightweight, modular and simple to use both via script and front end usage

COLLISION TERM

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$

Annihilation:

$$C_{\rm ann} \sim \int \! d\tilde{\Pi} \, \left| \, \mathcal{M} \, \right|^2_{\chi\chi \leftrightarrow f\bar{f}} \left(f_f^{\rm eq}(\tilde{p}) f_f^{\rm eq}(\tilde{k}) - f_\chi(p) f_\chi(k) \right)$$
 easy

El. scattering (on SM particles):

$$C_{\rm el} \sim \int \! d\tilde{\Pi} \left| \mathcal{M} \right|^2_{\chi f \leftrightarrow \chi f} \left(f_{\chi}(\tilde{p}) f_f^{\rm eq}(\tilde{k}) (1 \pm f_f^{\rm eq}(k)) - f_{\chi}(p) f_f^{\rm eq}(k) (1 \pm f_f^{\rm eq}(\tilde{k})) \right)$$
hard
medium

El. self-scattering (DM on DM):

$$C_{\text{self}} \sim \int d\tilde{\Pi} \left| \mathcal{M} \right|_{\chi\chi\leftrightarrow\chi\chi}^{2} \left(f_{\chi}(\tilde{p}) f_{\chi}(\tilde{k}) - f_{\chi}(p) f_{\chi}(k) \right)$$

 $\operatorname{medium:} \operatorname{\underline{no}} \operatorname{unknown} f_{\chi} \operatorname{under} \operatorname{integral}$

easy: $\underline{\mathbf{no}}$ unknown f_{γ} under integral

 \Rightarrow 2-3D integration

⇒ ID integration

contains both scatterings and annihilations

hard: unknown f_{γ} under integral

 \Rightarrow 2-4D integration

An approximate method needed!

$$d\tilde{\Pi} = d\Pi_{\tilde{p}}d\Pi_k d\Pi_{\tilde{k}}\delta^{(4)}(\tilde{p} + p - \tilde{k} - k)$$

APPROACHES

I) Expand in "small momentum transfer"

$$M_{\rm DM}\gg |\overrightarrow{q}|\sim T\gg m_{\rm SM}$$
 typical momentum transfer

Bringmann, Hofmann '06

$$\delta^{(3)}(\tilde{\mathbf{p}} + \tilde{\mathbf{k}} - \mathbf{p} - \mathbf{k}) \approx \sum_{n} \frac{1}{n!} (\mathbf{q} \nabla_{\tilde{\mathbf{p}}})^{n} \delta^{(3)}(\tilde{\mathbf{p}} - \mathbf{p})$$

Kasahara '09; Binder, Covi, Kamada, Murayama, Takahashi, Yoshida '16

$$f_3 \simeq f_1 + \tilde{\mathbf{q}}_i \frac{\partial f_1}{\partial \mathbf{p}_{1i}} + \frac{1}{2} \tilde{\mathbf{q}}_i \tilde{\mathbf{q}}_j \frac{\partial^2 f_1}{\partial \mathbf{p}_{1i} \partial \mathbf{p}_{1j}}$$

A.H. & S. Chatterjee, work in progress...

(on different expansion schemes)

all lead to Fokker-Planck type eq.

II) Replace the backward term with a simpler one (i.e. a relaxation-like approximation)

simpler, but generally incorrect

Ala-Mattinen, Kainulainen '19

Ala-Mattinen, Kainulainen '19
$$\hat{C}_{\mathrm{E},m}(p_1,t) \to -\delta f(p_1,t) \, \Gamma_{\mathrm{E}}^m(p_1,t)$$
 Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen '22 $= (g_m(t)f_{\mathrm{eq}}(p_1,t) - f(p_1,t)) \, \Gamma_{\mathrm{E}}^m(p_1,t)$

$$(\hat{p}^i)' = -\hat{\eta}\,\hat{p}^i + \hat{f}^i\;,\quad \left\langle\,\hat{f}^i(x_1)\,\hat{f}^j(x_2)\,\right\rangle = \,\hat{\zeta}\,\delta^{ij}\,\delta(x_1-x_2) \qquad \Longrightarrow \quad \text{perhaps promising...}$$
 stochastic term, taking care of detailed balance

Kim, Laine '23

IV) Fully numerical implementation

A.H. & M. Laletin 2204.07078 (focus on DM self-scatterings) Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen '22 Du, Huang, Li, Li, Yu '21

Aboubrahim, Klasen, Wiggering '23

⇒ doable, but (very) CPU expensive

EXAMPLE A: SCALAR SINGLET DM

EXAMPLE A SCALAR SINGLET DM

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

Annihilation processes:

resonant

El. scattering processes:

non-resonant

RESULTS

EFFECT ON THE Ωh^2

[... Freeze-out at few GeV what is the <u>abundance</u> of heavy quarks in QCD plasma?

two scenarios: QCD = A - all quarks are free and present in the plasma down to T_c = 154 MeV QCD = B - only light quarks contribute to scattering and only down to $4T_c$ •

EXAMPLE D:

When additional influx of DM arrives

D) Multi-component dark sectors

Sudden injection of more DM particles distorts $f_{\chi}(p)$ (e.g. from a decay or annihilation of other states)

- this can modify the annihilation rate (if still active)
- how does the thermalization due to elastic scatterings happen?

EXAMPLE EVOLUTION

2) DM annihilation has a threshold e.g. $\chi \bar{\chi} \to f \bar{f}$ with $m_{\chi} \lesssim m_f$

SUMMARY

- I. In recent years a significant progress in refining the relic density calculations (not yet fully implemented in public codes!)
- 2. Kinetic equilibrium is a <u>necessary</u> (often implicit) assumption for <u>standard</u> relic density calculations in all the numerical tools... ...while it is not always warranted!
- **3**. Introduced coupled system of Boltzmann eqs. for 0^{th} and 2^{nd} moments (cBE) allows for much more accurate treatment while the full phase space Boltzmann equation (fBE) can be also successfully solved for higher precision and/or to obtain result for $f_{DM}(p)$

(we also introduced DTAKE new tool to extend the current capabilities to the regimes beyond kinetic equilibrium)

4. Multi-component sectors, when studied at the fBE level, can reveal quite unexpected behavior