# $\begin{array}{l} Self\text{-interacting DM and} \\ THE \; H_0 \; \text{Tension} \end{array}$

### Andrzej Hryczuk



based on: **AH, K. Jodłowski** <u>2006.16139</u> (see also poster by Krzysztof!)

3rd South American DM workshop

4th December 2020

# OUTLINE

### 1. Motivation

- issues with the  $\Lambda CDM$  (large and small)
- significance of the beyond CDM component
- 2. Idea: self-interacting DM from late decays
  - a.k.a. how to have viable long range force with stable light mediator
- 3. Example model
  - with natural mechanism of transferring few % of energy to radiation
- 4. Phenomenology
  - impact on the  $H_0$  tension
  - candidate for ultra-SIDM
- 5. Conclusions

# $\Lambda CDM$ problems

### Small scale:

### I. Diversity

in  $\Lambda \text{CDM}$  essentially one parameter specifying a halo, while reality much more diverse

### II. Too-big-to-fail

most massive sub-haloes are expected to host luminous counterparts, but seem not to

### III. Core-cusp

simulations predict more cuspy profiles than typically observed

### IV. Missing satellites

simulations predict more more sub-haloes and hence we'd expect more MW satellites

### Early vs late:

### I. H<sub>0</sub> tension



### II. $\sigma_8 - \Omega_m$

### III. BAO z<1 vs. Ly- $\alpha$

(recently shrunk to below  $2\sigma$ ...)

# WHAT IS THE ROLE FOR DM?

### Small scale:

going beyond the collisionless CDM (e.g. having warm component or including self-interactions) can address (at least some of the) cosmological problems

quite rich literature on the subject...

...generically velocity-dependent self-interactions are preferred see e.g. review by Tulin, Yu '17

DM self-interactions due to exchange of a light mediator

#### Early vs late:

in  $\Lambda \text{CDM}$  the DM component is extremely simple

non-interacting, cold, with constant equation of state throughout whole evolution

however, if at late times a fraction of its energy is transferred to radiation (e.g. through decay or annihilation), then this can significantly affect the evolution

#### ... but can it address both at the same time?!

### SOME ISSUES...



 $\log_{10(\varepsilon)}$  B. Haridasu, M.Viel '20

# THE IDEA



both give viable, though not that unexpected mechanisms for self-interacting DM production, but superWIMP has an **intriguing feature**...

# THE IDEA

### WIMP-like connector state



 $\Gamma_{S \to \chi \chi} \propto \epsilon^2$ 



therefore, parametrically:

$$BR(S \to AA) \propto g^4$$
$$BR(S \to \chi \chi A) \propto g^2$$

 $\sim (1 - 10)\%$ 

(with different phase space factors and energy of the mediator)

if 
$$\delta = 1 - \frac{2m_{\chi}}{m_S} \ll 1 \implies$$

S decays mostly to matter  $\chi$ with small fraction to radiation A

Property needed to modify expansion rate here present in an automatic way!

# EXAMPLE MODEL

SM and dark sector connected through a very weak Higgs portal:

Assume WIMP-like symmetry

 $Z_2: S \to -S$ 

that is broken\* (explicitly or spontaneously) with breaking parametrized by  $\epsilon$ 



Relevant interaction terms:



\* at some high scale, e.g GUT or even Planck scale

# HISTORY



[The model can be viewed also as an extension of the usual Higgs portal DM to weaker couplings]

# **REGIME A: ONLY SIDM**



small scale problems

In this regime DM is produced from out of equilibrium decay and never thermalizes



more extended parameter space giving large self-interactions than in thermal models

> the mediator is not in the plasma and therefore can be absolutely stable

# DCDM MODEL

#### It has been noted that the Decaying DM model (DCDM) with two parameters:

 $\Gamma$  — decay width F — fraction of the decaying component

#### can improve the fit to the Hubble parameter over the CDM



...; S. Aoyama et al. '14; V. Poulin, P. Serpico, J. Lesgourgues '16; K. Enqvist et al. '15; G. Blackadder, S. Koushiappas '18; Y. Gu et al. '20; ...

### We have performed our fit with MontePython using combined datasets:

- Planck 2018
- BAO data from the BOSS survey
- the galaxy cluster counts from Planck catalogue
- local measurement of the Hubble constant.

with two different life-time priors: short and long (motivated by previous results) K.Vattis, S. Koushiappas, A. Loeb '19

# DCDM MODEL



The H<sub>0</sub> parameter best fit:

Two preferred lifetime regimes:

- short (regime B):  $\tau \sim 4$  Myr while fraction of dark radiation is strongly constrained to be below ~ 1%
- long (regime C):  $\tau \sim 5$  Gyr while fraction of dark radiation is allowed to be as big as ~ 10%.

The shift of the  $H_0$  compared to  $\Lambda CDM$  is however rather mild in models of the type as our example

... although this could perhaps be modified with model building, complete solution of the  $H_0$  tension is unlikely see also S. Clark et al. '20

but DCDM can play its part in the full solution

# REGIME B: SIDM FROM LATE DECAYS



In this regime life-time on cosmological scales changing the expansion rate - chance to impact the H<sub>0</sub> tension



best fit spans over wide region of mediator mass  $\leq 1 \text{MeV}$ but pretty specific  $m_{\chi}$ 

though the change of the H<sub>0</sub> parameter is not large enough to completely solve the tension

# REGIME C: ULTRA-SIDM



 $H_0$  or help with SMBHs formation rate, but not both

# BONUS: XENON 1T

Throughout the whole discussion we assumed the mediator is completely stable...

... but it does not need to be



G.Alonso-Alvarez et al. '20

### CONCLUSIONS

I. Mechanism of self-interacting DM production from decays of an intermediate state offers a new way of constructing models satisfying the known constraints

**2**. It provides a natural way of transferring few % of energy density to radiation at late times allowing for moderately alleviating the  $H_0$  tension

[or from a different angle: can be a part of the solution as it's quite likely that true explanation is a combination of few effects]

**3**. Extensions of the simple model discussed here can offer interesting phenomenology and are worth investigating