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freeze-out 

DM in full equilibrium

chemical decoupling
timeT

kinetic decouplingΓscatt ∼ H
Γann < H

Γann ∼ H

Γann > H

THERMAL RELIC DENSITY  
STANDARD SCENARIO

(chemical and kinetic)
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time evolution of         in kinetic theory: 

freeze-out 

DM in full equilibrium

chemical decoupling
timeT

no
n-

eq
uil

ibr
ium

f�(p)

E (@t �H~p ·r~p) f� = C[f�]
the collision termLiouville operator in 

FRW background

kinetic decouplingΓscatt ∼ H
Γann < H

Γann ∼ H

Γann > H

THERMAL RELIC DENSITY  
STANDARD SCENARIO

(chemical and kinetic)
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*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

E (@t �H~p ·r~p) f� = C[f�]
Boltzmann equation for        :f�(p)
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dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n
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�̄

�
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where the thermally averaged cross section:
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�
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integrate over p 
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*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

Critical assumption: 
kinetic equilibrium at chemical decoupling

E (@t �H~p ·r~p) f� = C[f�])

where the thermally averaged cross section:

h���̄!ijvrelieq = �
h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄

Boltzmann equation for        :

integrate over p 
(i.e. take 0th moment)

f�(p)

)

fχ ∼ a(T ) f eq
χ



FREEZE-OUT VS. DECOUPLING

DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

where t = q̃2 = (k − k′)2, and after summing over all the spins we get

∑

spins

∣

∣Mscatt
∣

∣

2
=

e4

t2
× tr

(

(̸k′ +me)γ
ν (̸k +me)γ

λ
)

× tr
(

(̸p′ +Mµ)γν (̸p +Mµ)γλ
)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
(

(̸k′ +me)γ
ν (̸k +me)γ

λ
)scatt

↔ − tr
(

(̸p2 −me)γ
ν (̸p1 +me)γ

λ
)pair

,

tr
(

(̸p′ +Mµ)γν (̸p+Mµ)γλ
)scatt

↔ − tr
(

(̸p′1 +Mµ)γν (̸p
′

2 −Mµ)γλ
)pair

,

(8)

and hence
∑

spins

∣

∣Mscatt
∣

∣

2
↔

∑

spins

∣

∣Mpair
∣

∣

2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,

∑

spins

∣

∣Mpair
∣

∣

2
= F (p1, p2, p

′

1, p
′

2) and
∑

spins

∣

∣Mscatt
∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just

2
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crossing sym.

~

dark matter frozen-out but typically 
still kinetically coupled to the plasma

Boltzmann suppression of DM vs. SM scatterings typically more frequent)

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

5



EARLY KINETIC DECOUPLING?
A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

6
D)    Multi-component dark sectors

e.g., additional sources of DM from late decays, …
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HOW TO GO BEYOND KINETIC EQUILIBRIUM?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilations

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in the full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution
no constraining assumptions

numerically challenging
often an overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically
manifestly captures all of the relevant physics

finite range of validity
no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

y ⌘ m�T�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T� ⌘ g�

3m�n�

Z
d
3
p

(2⇡)3
p
2
f�(p) (24)

2

…fB
E cBE



https://drake.hepforge.org

Prediction for the DM 
phase space distribution

Late kinetic decoupling 
and impact on cosmology

see e.g., 1202.5456

Interplay between chemical and 
kinetic decoupling

Applications:

DM relic density for 
any (user defined) model

*

*

at the moment for a single DM species and w/o 
co-annihlations… but stay tuned for extensions! 8

…

(only) prerequisite:  
 Wolfram Language (or Mathematica)

NEW TOOL! 
GOING BEYOND THE STANDARD APPROACH

https://drake.hepforge.org
https://drake.hepforge.org


EXAMPLE A:
SCALAR SINGLET DM
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DM

DM

SM

SM

DM
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DM
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>>A)



EXAMPLE A 
SCALAR SINGLET DM
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h�vreli2 ⌘
g
2
�

3Tm�n
2
�

Z
d
3
p

(2⇡)3

Z
d
3
p̃

(2⇡)3
p
2
vrel��̄�!X̄Xf(E)f(Ẽ) (1)

where the equilibrium number density in the nonrelativistic regime is n
eq
� = m

3
�g�K2(x)/(2⇡

2
x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the

Boltzmann equation can be written as:

y
0

y
= �Y

0

Y

✓
1� h�vreli2

h�vreli

◆
�
✓
1� x

3

g
0
⇤S
g⇤S

◆
2m�c(T )

Hx

✓
1� yeq

y

◆
, (2)

with

c(T ) =
1

12(2⇡)3m4
�T

X

X

Z
dk k

5
!
�1

g
± �

1⌥ g
±�
Z 0

�4k2

(�t)
1

8k4
|Mel|2 . (3)

To summarize we get coupled equations:

Y
0

Y
= �

1� x
3
g0
⇤S

g⇤S

Hx
sY

 
h�vreli|x=m2

�/(s
2/3y) �

Y
2
eq

Y 2
h�vreli|x

!
(4)

y
0

y
= �

1� x
3
g0
⇤S

g⇤S

Hx

"
2m�c(T )

✓
1� yeq

y

◆
(5)

�sY

 ⇣
h�vreli � h�vreli2

⌘

x=m2
�/(s

2/3y)
�

Y
2
eq

Y 2

⇣
h�vreli � h�vreli2

⌘

x

!#
.

The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,

LS =
1

2
@µS@

µ
S � 1

2
µ
2
SS

2 � 1

2
�sS

2|H|2 . (6)

After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving

ms =

r
µ
2
S +

1

2
�sv

2
0 , (7)

where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.

�vrel =
2�

2
sv

2
0p

s
|Dh(s)|2�h(

p
s) , (8)

where

|Dh(s)|2 ⌘ 1

(s�m
2
h)

2 +m
2
h�

2
h(mh)

. (9)

• For ms < mh/2, the width in the propagator Dh(s) must be increased by the invisible contribution �inv

due to h ! SS:

�inv =
�
2
sv

2
0

32⇡mh

�
1� 4m

2
s/m

2
h

�1/2
, (10)

• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign

w.r.t. [?], as pointed out by P. Gondolo):

vrel�hh =
�
2
s

16⇡s2vs


(a

2
R + a

2
I)svsvh

� 4�sv
2
0

✓
aR � �sv

2
0

s� 2m
2
h

◆
log

����
m

2
s � t+

m2
s � t�

����

+
2�

2
sv

4
0svsvh

(m2
s � t�)(m2

s � t+)

�
, (11)

where vi =
p
1� 4m

2
i /s, t± = m

2
s +m

2
h � 1

2s(1⌥ vsvh), and

aR ⌘ 1 + 3m
2
h(s�m

2
h)|Dh(s)|2

aI ⌘ 3m
2
h

p
s�h(mh)|Dh(s)|2. (12)

1
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◆
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5
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To summarize we get coupled equations:
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving
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r
µ
2
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1

2
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2
0 , (7)

where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.
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• For ms < mh/2, the width in the propagator Dh(s) must be increased by the invisible contribution �inv

due to h ! SS:
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• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign

w.r.t. [?], as pointed out by P. Gondolo):
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To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄

2
hS

-dependence of ‡SI and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄

≠2
hS

, owing to its de-
pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].

Most of the parameter space excluded, but… even such a simple model is hard to kill

best fit point hides in the resonance region!
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RESULTS
EFFECT ON THE Ωh2

effect on relic density: 
up to O(~10)

[… Freeze-out at few GeV        what is the abundance of heavy quarks in QCD plasma?

 two scenarios: QCD = A - all quarks are free and present in the plasma down to Tc =154 MeV
QCD = B - only light quarks contribute to scattering and only down to 4Tc …]



EXAMPLE D:
WHEN ADDITIONAL INFLUX OF DM ARRIVES
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D)    Multi-component dark sectors

Sudden injection of more DM particles distorts 
(e.g. from a decay or annihilation of other states)

fχ(p)

- this can modify the annihilation rate (if still active)

- how does the thermalization due to elastic scatterings happen?



DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf
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DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

nBE (i.e
. en

force
d 

kin
etic

 eq
uilib

riu
m)

fBE (no self-
scatterings)

fBE (with self-
scatterings)

no enhanced 
annihilation, 
more DM in 

the end

some injected 
particles will 

annihilate together 
with themselves and 

cold component

energy redistribution 
will allow more DM 
particles to reach 

energies over 
annihilation threshold 



DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

number densityY ∼ temperaturey ∼ momentum distributionp2 f (p) ∼

EXAMPLE EVOLUTION

x = 100

sub-thershold +

x = 80

sub-thershold +

x = 60

sub-thershold +

x = 40

sub-thershold +

x = 34

sub-thershold +

0 50 100 150 200
0.00

0.05

0.10

0.15

0.20

no decay

eq.

nBE

fBE

fBE gχ=0

20 40 60 80 100

10-13

10-12

10-11

10-10
sub-thershold +

20 40 60 80 100100

101

102

103

AH, Laletin 2204.07078



FREEZE-IN:
C) with semi-annihilation process
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HOW ABOUT SEMI-PRODUCTION?

What is different (from the decay/pair-annihilation freeze-in)? 

• The production rate is proportional to the DM density. 
(Smaller initial abundance → larger cross section…)

• Semi-production modifies the energy of DM particles in a 
non-trivial way, so the temperature evolution can affect the 
relic density

χϕ → χχ
Consider process of production that is the inverse of semi-annihilation:

DM mediator or a SM state

AH, Laletin 2104.05684
(see also Bringmann et al. 2103.16572)
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EVOLUTION

co-moving number density ’temperature’
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EVOLUTION

co-moving number density ’temperature’

The full calculation compared to one assuming  
can differ by more than order of magnitude!

Tχ = T
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INDIRECT DETECTION

• The results of the scan in the 
parameter space for the DM 
production dominated by the 
semi-annihilation processes. 

• The coloured squares indicate 
the points, which are within the 
reach of the future searches for 
the mediator  and the empty 
ones are beyond these prospects.

• The points above the grey dot-
dashed line can potentially 
explain the core formation in 
dSph [1803.09762]

ϕ



SUMMARY
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1. Kinetic equilibrium is a necessary (often implicit) assumption for 
standard relic density calculations in all the numerical tools…

3. Introduced                            : a new tool to extend the 
current capabilities to the regimes beyond kinetic equilibrium

2. Much more accurate treatment comes from solving the full phase 
space Boltzmann equation (fBE) to obtain result for  where 
one can study also self-thermalization from self-scatterings 

fDM(p)

4. Multi-component sectors, when studied at the fBE level, 
can reveal quite unexpected behavior

…while it is not always warranted!


