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HEAVY WIMPS:�
STATUS AND FUTURE PROSPECTS



In a strong sense: 

interacting through SM weak interactions 


and (therefore) also massive 

In a weak sense: 

DM cannot interact too strongly with the SM (or it would be seen)


and has to have a mass to contribute to observed gravitational 
potential (now and during the structure formation)

WIMP

WEAKLY INTERACTING AND MASSIVE 
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…but every massive particle with not-too-weak interactions with 
the SM will be produced thermally, with relic abundance:

1.4. DETECTION METHODS 17
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Within this approximation, in a radiation dominated Universe with an adiabatic expan-
sion, it is possible to find an analytical solution, giving the freeze-out happening at [41]:
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and the relic density being equal to
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If one plugs in the numbers of a typical WIMP of a mass O 100GeV one indeed gets
xf 20 30 and the relic density:
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3 10 26cm3s 1

�v
. (1.30)

This is the advocated famous ”WIMP miracle”: a particle of a typical cross-section gov-
erned by weak interactions and mass on a weak scale gives correct thermal relic density.
This result should be taken however with a grain of salt. Not only it depends on several
assumptions and is related only to the simplified case without co-annihilations, but also
inspected in more detail shows that in fact the mass of the WIMP should be rather a bit
closer to a TeV scale and in concrete realizations rather fine-tuned, see e.g. [47]. This
weakens a bit the motivation of a WIMP as a manifestation of new weak scale physics.
Nevertheless, this simple computations shows why so much e↵ort is devoted to studies of
the weakly interacting massive particles.

1.4 Detection methods

The prospects for experimental searches for the dark matter very strongly relies on its
nature. If it is (nearly) decoupled from our visible SM sector we can probe it only via
gravity-strength interactions. In this case it is extremely hard to measure any of its
properties. On the other hand, if the dark matter has anything to do with the new
physics suggested by the open issues in the SM, other detection channels are possible. In
the case of a WIMP, its properties lead to possible observable scattering on the nuclei in
direct detection (DD) and additional source of cosmic rays in indirect detection (ID).

Dark matter could be created in many different ways…

Lee, Weinberg ’77; + others

This is dubbed the WIMP miracle because it coincidentally seem to point 

to the same energy scale as suggested by the Hierarchy Problem

THE ORIGIN OF DARK MATTER
AND THE „WIMP MIRACLE”
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As a bonus: interaction of this strength gives hope for 
detection in direct, indirect and collider searches!



Direct Detection of Dark Matter 32

Figure 12. The current experimental parameter space for spin-independent WIMP-

nucleon cross sections. Not all published results are shown. The space above the

lines is excluded at a 90% confidence level. The two contours for DAMA interpret

the observed annual modulation in terms of scattering of iodine (I) and sodium (Na),

respectively. The dashed line limiting the parameter space from below represents the

“neutrino floor” [112] from the irreducible background from coherent neutrino-nucleus

scattering (CNNS), see Sect. 3.4.

below m� = 1.8 GeV/c2 [120], extending the mass range into the sub-GeV regime down

to 0.14 GeV/c2. The result for the lowest masses was achieved using a 0.5 g sapphire-

crystal (Al2O3) with a threshold of 20 eV. The cryogenic crystal was operated above

ground without significant shielding for 2.27 hours, the background level in the region

of interest was 1.2 ⇥ 105 events/(kg⇥ d⇥ keVee) [121].

In a small window around 0.5-06 GeV/c2 the best exclusion limit around 3 ⇥

10�37 cm2 is from NEWS-G, a spherical proportional counter with 60 cm diameter and

filled with a Ne+CH4 (0.7%) gas-mixture at 3.1 bar (corresponding to 283 g) [122]. With

its low threshold of 36.5 eVee and the use of the low-A gas neon the instrument was

optimized to search for low-mass WIMPs.

Spin-dependent interactions As discussed in Sect. 2.1, bubble chambers filled with

targets containing the isotope 19F have the highest sensitivity to spin-dependent WIMP-

proton couplings. The best limit to date is from PICO-60, operated with 52 kg of C3F8

(octafluoropropane), see Fig. 13 (top). No excess of WIMP candidates was observed

FIG. 18. Reproduced from Ref. [153], constraints on spin-independent DM-nucleus scattering as well as a
few best-fit regions from DAMA. The shaded region labeled ⌫-floor indicates the approximate DM mass and
cross section where the sensitivity starts to become limited by the irreducible background from neutrino
coherent scattering [191]. Note that these exclusion limits do not exclude all cross sections above the lines,
since for sufficiently large �n the DM scatters too much in the Earth and loses energy [192–194].

are from the XENON1T collaboration [189], with an exposure of almost 10
6 kg-day. In the next

decade, the sensitivity will improve by another 1-2 orders of magnitude (from experiments such as
DarkSide, PandaX, LZ, XENONnT). The sensitivity at low m� drops rapidly due to the energy
thresholds in the experiments, Eth

R
& 5 � 10 keV. The sensitivity at high m� drops because the

number density of DM drops as 1/m�. The constraints on spin-dependent cross sections are weaker,
and at the level of 10

�41 cm2 for coupling to neutron spin and 10
�40 cm2 for coupling to proton

spin (see for example Ref. [190]).
What are the implications for models of WIMPs? Using Eq. 99 and setting CV = g2

w ⇠ 0.1

where gw is a weak gauge coupling, the typical cross section for a 100 GeV DM candidate scattering
through a vector coupling to the Z-boson is

�V

n ' 10
�37

cm
2 . (113)

For Higgs exchange, using Eq. 106 and setting CS = 0.01,

�S

n ' 6 ⇥ 10
�47

cm
2 . (114)

For some DM candidates (such as Majorana fermion DM), scattering through the vector coupling
to the Z boson is highly suppressed or zero. For Z-exchange and an axial vector coupling with

57

”The great tragedy of science - the slaying of 

a beautiful hypothesis by an ugly fact”


Aldous Huxley

On both Direct Detection and LHC front no* signal of DM particle!
*convincing

CURRENT LIMITS�
AND DECLINE OF THE WIMP PARADIGM

5



11

FIG. 9: Bounds on the generic thermal WIMP window, as-
suming WIMP DM is 100% of the DM. Shown is the con-
servative bound calculated in this work from data (Visibles),
and the unitarity bound [48]. The remaining WIMP window
is the orange line, and the white space is unprobed. Thermal
relic cross section is the dashed line [4].

lower than the mass of their progenitor particle; other-
wise the portion of DM energy split into each mediator’s
final states will be unequal [118, 119], introducing extra
model dependence to the calculation.

Note that 2 ! 3 bremsstrahlung processes can be
the dominant DM annihilation mode in the scenario
the 2 ! 2 annihilation mode is suppressed [120–135].
Bremsstrahlung can lift helicity suppression for direct
annihilation for Majorana DM to neutrinos, but the an-
nihilation rate is generally still not su�ciently large to
produce a thermal relic cross section.

3. Invisibles and Sub-Dominant Density

When the limit on the total cross section is below
the thermal-relic prediction, the WIMP is nominally ex-
cluded. There are two other possible interpretations.

First, the fraction below the limit can be interpreted as
the fraction required to proceed to invisible final states.

Second, the strength of the limit below the relic line
can also be used to set a bound on sub-dominant WIMP
content. For standard indirect detection analyses for
WIMP DM, the annihilation cross section and the den-
sity are often considered as independent, and are related
to the astrophysical flux F as

F =
h�vi

8⇡m2
�

Z
⇢
2

�d`, (14)

where ⇢� is the DM density, and ` is the line of sight.

FIG. 10: Bounds on the generic thermal WIMP window, as-
suming sub-dominant WIMP content. Shown is the conserva-
tive bound calculated in this work from data (Visibles), and
the unitarity bound [48]. Thermal relic cross section is the
dashed line [4].

The upper limit is obtained from upper limits on F , i.e.,

h�vi < h�vlimiti ⌘ F
8⇡m2

�R
⇢2�d`

. (15)

For sub-dominant WIMP DM, if the WIMP density is
completely determined by the annihilation cross section,
they are no longer independent, as

⇢WIMPh�vWIMPi = ⇢�h�v�i, (16)

where h�v�i ⇠ 3⇥ 10�26 cm3
/s is the thermal relic cross

section. The annihilation flux from the sub-dominant
WIMP is then

F =
h�vWIMPi

8⇡m2
�

Z
⇢
2

WIMP
d`

=
h�vWIMPi

8⇡m2
�

Z ✓
�v�⇢�

h�vWIMPi

◆2

d` (17)

=
h�v�i

2

h�vWIMPi

1

8⇡m2
�

Z
⇢
2

�d`.

Therefore, an upper limit on the flux implies

h�v�i
2

h�vWIMPi
< h�vlimiti, (18)

which provides a lower limit on the sub-dominant WIMP
cross section,

h�vWIMPi >
h�v�i

2

h�vlimiti
. (19)

R. Leane et al; 1805.10305

Most of the (strongest) limits are 
based on assumptions motivated by 
theoretical prejudice (or convenience)

this can lead to a very 

broad-brush conclusions

excluded by 
observations

predicted probabilities 
can be >1

too much dark 
matterall fine!

… BUT IN FACT WIMP�
NOT EVEN SLIGHTLY DEAD
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…AND WHY IT IS WORTH IT

Little Hierarchy Problem: further away from the lamppost (LHC), 
fine tuning gots worse for simplest models (e.g. CMSSM)


Thermal abundance requires large couplings (unitarity bound) or 
specific mechanism

There is no reason in principle not to consider full thermal 
range up to unitarity limit (apart from naturalness mentioned above)


Even SUSY has regions in that regime and there are many 
more models on the market

Theory: new phenomena and new challenges appear

WHY NOT TO GO TO TEV…
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2. DM theory at the TeV scale



WHY TEV SCALE IS DIFFERENT?

For completely generic DM it is actually not that different… 

• more difficult to test  
(LHC - energy,  DD&ID - number density)


• unitarity limit (if thermally produced)
• DM dynamics during EW phase transition

what changes:

For a WIMP, however, one major difference:

mDM ≫ mW, mZ, mh ⇒
II. electroweak (and Higgs mediated) 

interactions become long-ranged

I. SU(2) non-Abelian - leads to 
Sudakov corrections

&
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loop corrections
internal 


bremsstrahlung

α2

(

log
m

2

m
2

W

)2

α2 log
m

2

m
2

W

m = 1 TeV, α2 ≈
1

30
⇒ ≈ 0.17 ≈ 0.86

enhancement by large (Sudakov) logarithms:

EW CORRECTIONS

10

m ! mW resambles IR divergence of QED or QCD
Bloch-Nordsieck violation Ciafaloni et al. ’00  

Bloch-Nordsieck: QED in the inclusive cross-section IR logs cancel
Kinoshita-Lee-Nauenberg: generalized to SM, but only when summed over initial non-abelian charge

PPPC 4DM ID: Cirelli et al., ’11  



tree level result ∼ 1/m2

with g at scale 

     with SM running

m

EXAMPLE:

WINO DM @ 1-LOOP

AH, R. Iengo; JHEP 1201 (2012) 163



tree level result ∼ 1/m2

with g at scale 

     with SM running

m

one-loop result

AH, R. Iengo; JHEP 1201 (2012) 163

EXAMPLE:

WINO DM @ 1-LOOP

χ0
χ0

W+

χ−

W−W+

χ0
χ0

W−W+

W−
Z, γ Z, γ

χ0
χ0

W−W+

χ0
χ0

W−W+

W±

1) 2) 3)

χ0χ0

W−W+

a)

χ0χ0

W−W+

b)

χ0χ0

W−

W+

c)

t b̄Z, γ Z, γ

χ0χ0

W−W+

4)

W+χ+ χ−

Z, γ

χ0χ0

W−W+

5)

…~2
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LARGE EW EFFECTS

α2 log
m2

χ

m2
W

α2(log
m2

χ

m2
W )

2

&

Sudakov corrections

now @ NLL’

resummation to all orders 
using EFT techniques

SCET
(soft-collinear effective theory)

RG for Wilson coeff.

Baugmart et al. ’14; Bauer et al. ’14;

Ovanesyan et al. ’14, ’16, …

SCET: 

an EFT not based on dim. of 

operators but diff



ff
fi




.


for intro see e.g. in Becher, 
Broggio, Ferroglia ’14



EFFECT OF SCET RESSUMATION
EXCLUSIVE ANNIHILATION
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FIG. 1: Here we show our NLL0 result for the electroweak corrections to the charged (left) and neutral (right) DM annihilations obtained
by adding the one-loop high and low-scale corrections to the NLL result. The result is in good agreement with the known NLL calculation,
but with smaller uncertainty since the scale uncertainties have been reduced. The bands here are derived by varying the high scale between
m� and 4m�.

FIG. 2: As for Fig. 1, but showing a variation in the low-scale matching between mZ/2 and 2mZ , rather than a variation of the high-scale
matching. As can be seen the NLL0 contribution has reduced the low scale dependence in both charged and neutral DM annihilation
cases, and is again consistent with the NLL result.

and s0± = s±0 = 0, implying that when the Sommerfeld
enhancement can be ignored we can associate |⌃1|

2 with
the Sudakov contribution to �+�� annihilation and |⌃1�

⌃2|
2 with �0�0.

For this reason, in Fig. 1 and Fig. 2 we show the con-
tributions to |⌃1|

2 and |⌃1�⌃2|
2 for LL, NLL and NLL0.

In both cases we see the addition of the one-loop correc-
tions is completely consistent with the NLL results, sug-
gesting that this approach has the Sudakov logarithms
under control. In these plots we take a central value of
µm� = 2m� and µZ = mZ . In Fig. 1 the bands are de-
rived from varying the high-scale matching between m�

and 4m�. Recall that if we were able to calculate these
quantities to all orders, they would be independent of µ,
and so varying these scales estimates the impact of miss-
ing higher order terms. For the |⌃1|

2 NLL result, taking

µm� = 2m� is a minimum in the range varied over, so
we symmetrise the uncertainties in order to more conser-
vatively estimate the range of uncertainty. Similarly in
Fig. 2 we show the equivalent plot, but here the bands
are derived by varying the low scale µZ from mZ/2 to
2mZ . Improving on the high and low-scale matching, as
we have done here, should lead to a reduction in the scale
uncertainty. In all four cases shown this is clearly visible
and furthermore all results are still consistent with the
NLL result within the uncertainty bands.

We can also take this result and determine the impact
on the full DM annihilation cross section into line pho-
tons from �� and �Z in this model, as we show in Fig. 3.
We take the uncertainty on our final result to include the
high and low-scale variations added in quadrature. For
H.E.S.S. limits we use [2], whilst for the CTA projection

3

After matching, the next step is to evolve these op-
erators down to the low scale, e↵ectively resumming
the large logarithms ln(2m�/mZ) and ln(2m�/mW ) that
caused a breakdown in the perturbative expansion of the
coupling. This is done using the anomalous dimension
matrix �̂ of the two operators (a matrix as the operators
will in general mix during the running). In general the
matrix can be broken into a diagonal piece �WT , and a
non-diagonal soft contribution �̂S , as

�̂ = 2�WT I+ �̂S . (6)

To NLL these results are given by [24]:

�WT =
↵2

4⇡
�g

0 ln
2m�

µ
�

↵2

4⇡
b0 +

⇣↵2

4⇡

⌘2
�g

1 ln
2m�

µ
,

�̂S =
↵2

⇡
(1� i⇡)

✓
2 1
0 �1

◆
�

2↵2

⇡

✓
1 0
0 1

◆
.

(7)

Here the diagonal anomalous dimension has been written
in terms of the SU(2)L one-loop �-function, b0 = 19/6,
as well as the cusp anomalous dimensions, �g

0 = 8 and
�g

1 = 8
�
70
9 �

2
3⇡

2
�
, and we use the full SM particle con-

tent for this evolution.1 Renormalization group evo-
lution with the anomalous dimension also requires the
two-loop �-function, and for this we take b1 = �35/6.
Our normalization convention is such that µd↵2/dµ =
�b0↵2

2/(2⇡)�b1↵3
2/(8⇡

2). Below the DM matching scale,
the spin of the DM is no longer important. As such the
anomalous dimension determined in [24] for the fermionic
wino should resum the same logarithms as those that ap-
pear in the scalar case considered in [23], and we have
confirmed they agree.

We can then explicitly use the full anomalous dimen-
sion to evolve the operators as follows:


CX

± ({mi})

CX

0 ({mi})

�
= eD̂

X(µZ ,{mi}))P exp

 Z
µZ

µm�

dµ

µ
�̂(µ,m�)

!

⇥


C1(µm� ,m�)
C2(µm� ,m�)

�
, (8)

Let us carefully explain the origin and dependence of each
of these terms. Starting from the right, C1 and C2 are
the high-scale Wilson coe�cients of the operators stated
in Eq. (2), resulting from a matching of the full theory
onto NRDM-SCETEW. These only depend on the high
scales, specifically µm� and m�. Next the anomalous
dimension �̂ is also a high scale object, and so only de-
pends on m� and now µ as it runs between the relevant

scales. D̂X is a factor accounting for the low-scale match-
ing from NRDM-SCETEW onto NRDM-SCET� – a the-
ory where the electroweak modes have been integrated
out, see [20, 43–46]. It is a matrix as soft gauge boson

1 This means we take mt ⇠ mH ⇠ mW,Z and integrate out all
these particles at the same time at the electroweak scale.

exchanges can mix the operators. Furthermore D̂X is
labelled by X to denote its dependence on the specific fi-
nal state considered, ��, �Z or ZZ. This object depends
on the low-scale physics and so depends on µZ and all
the masses in the problem, which we denote as {mi}.
It contains both a resummation of low-scale logarithms
(which can be carried out directly as in [43, 44] or more
elegantly with the rapidity renormalization group [48],
see also [49]) as well as the low scale matching coe�cient
which does not necessarily exponentiate. Finally on the
left we have our final coe�cients CX

± and CX

0 , which as
explained below can be associated with the charged and
neutral annihilation processes. In an all orders calcula-
tion of all terms in Eq. (8), the scale dependence would
completely cancel on the right hand side, implying that
CX

± and CX

0 depend only on the mass scales in the prob-
lem and not µm� or µZ . Nevertheless at any finite per-
turbative order, the scale dependence does not cancel
completely and so a residual dependence is induced in
these coe�cients. We will exploit this to estimate the
uncertainty in our results associated with missing higher
order terms.
As we are performing a resummed calculation, the or-

der to which we calculate is defined in terms of the large
electroweak logarithms we can resum. In general the
structure of the logarithms can be written schematically
as:

ln
C

Ctree
⇠

1X

k=1

h
↵k

2 ln
k+1

| {z }
LL

+↵k

2 ln
k

| {z }
NLL

+↵k

2 ln
k�1

| {z }
NNLL

+ . . .
i
,

(9)
where since Sudakov logarithms exponentiate, we have
defined the counting in terms of the log of the result.
Furthermore all corrections are defined with respect to
the tree level result Ctree

⇠ O(↵2), which is a conven-
tion we will follow throughout. With this definition of
the counting, to perform the running in Eq. (8) to NLL
order, there are three e↵ects that must be accounted for:
1. high-scale matching at tree level; 2. two-loop cusp
and one-loop non-cusp anomalous dimensions; and 3. the
low-scale matching at tree level, together with the ra-
pidity renormalization group at NLL. To extend this to
NNLL all three of these need to be calculated to one or-
der higher. In between these two is the NLL0 result we
present here, which involves determining both the high
and low-scale matching at one loop. In terms of Eq. (9),
this amounts to determining the leading k = 1 piece of
the NNLL result. To the extent that O(↵2) corrections
are larger than those at O(↵2

2 ln(µ
2
m�

/µ2
Z
)), the NLL0 re-

sult is an improvement over NLL and more important
than NNLL.
Before presenting the result of that calculation, how-

ever, it is worth emphasising another advantage gained
from the e↵ective theory. In addition to allowing us to
resum the Sudakov logarithms, the e↵ective theory also
allows this problem to be cleanly separated from the issue
of low-velocity Sommerfeld enhancement in the ampli-
tude – in NRDM-SCET there is a Sommerfeld-Sudakov

Ovanesyan et al. ’16  

Using SCET the contribution for large logarithms and (large logarithms)2 
can be summed to all orders:

This (relatively complicated computation) does not have to be done if DM is lighter! 14

~O(1%)

Example: how value and 
uncertainty of the 

calculation changes with 
accuracy order for Wino 

DM exclusive annihilation

NLL’ = NLL +    𝒪(α2)

Reminder:
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EFFECT OF SCET RESSUMATION
SEMI-INCLUSIVE ANNIHILATION

LL

NLL
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Figure 11. A comparison of our LL and NLL calculations with inclusive, exclusive and semi-inclusive
predictions from the literature. The best agreement is found with the semi-inclusive calculation. The
disagreement as zcut ! 1 is due to unresummed logarithms of (1�zcut) in the semi-inclusive calculation
which are correctly captured using our formalism.

and the approximation made here treats the kinematics for � � and � Z identically, see [15, 44]
for additional discussion of this convention. Note that these mock limits only include the
contribution from the line and endpoint spectrum; the justification to neglect the contribution
from continuum production resulting from wino annihilation to W

+
W

� at lower masses was
provided in [15]. While we caution that a genuine analysis of the 2013 H.E.S.S. data should be
done to provide an actual limit, we see that our mock limit shows that the thermal wino with
mass M� = 2.9 TeV is excluded by a factor of ⇠ 25. We also emphasize that this assumes
an Einasto DM profile, so that one way to avoid this seemingly stringent bound on wino
annihilation is to core the profile, see e.g. [44, 61] for a discussion. Importantly, the theory
error band shown for the prediction in this plot is now under excellent control, justifying the
need for our NLL calculation. For a more careful exploration of the implications of the NLL
endpoint spectrum in the context of H.E.S.S. forecast limits, see [44].

Finally, in Fig. 11 we show a comparison of our NLL cross section with several calculations
that exist in the literature. In particular, we compare with the fully exclusive (line) calculation
at NLL [22, 25], the inclusive calculation at LL [20, 23], and the semi-inclusive calculation
at LL0 [24]. With the reduced NLL uncertainties, we see that for zcut ⇠ 0.8-0.9, our pre-
diction differs significantly from the exclusive and inclusive predictions, being approximately
intermediate between the two, which individually each sum large log(M�/mW ) logarithms at
NLL order. As expected, the semi-inclusive provides a better approximation, agreeing with
the shape and norm of the LL endpoint result away from zcut ! 1. However, this calculation

– 40 –
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E
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2
W
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Figure 1: Energy resolution of the CTA experiment (solid black line, from [9]), and the
power-law fit E

�

res
= 0.0915 (E�/TeV)0.653 (dash-dotted) with E� = m�. The dark-grey

(red) and light-grey (blue) bands show where the intermediate and narrow resolution
resummation applies, respectively. The boundaries are defined by mW [1/4, 4] (interme-
diate resolution) and m

2

W
/m� [1/4, 4] (narrow resolution).

intermediate : E
�

res
⇠ mW

wide : E
�

res
� mW (2)

The wide resolution regime was considered in [6, 8] and resummed at the NLL order.
Due to the double hierarchy m� � E

�

res
� mW a two-step procedure applies to simul-

taneously sum the unrelated large logarithms of m�/mW and E
�

res
/mW . This procedure

requires large dark matter masses to satisfy both hierarchies. Resummation of elec-
troweak Sudakov logarithms for the narrow resolution case was accomplished in [7] at
the NLL’ order. The intermediate resolution regime has not been considered up to now.

In the present paper we close this theoretical gap. We develop the e↵ective field theory
(EFT) for the intermediate resolution regime and sum the electroweak logarithms at the
NLL’ order. We show that the result can be smoothly joined to the narrow resolution
regime to provide a precise prediction of the photon energy spectrum near m� in the
entire region from the line signal (E�

res
= 0) to E

�

res
⇡ 4mW . We also provide details and

derivations for the narrow resolution regime not given in the letter [7].
The intermediate resolution regime is relevant to present and upcoming DM searches.

For example, assuming the regime to apply to E
�

res
in [mW/4, 4mW ] the energy resolution

of the H.E.S.S. experiment E
�

res
/E� ⇡ 10% [10] implies that dark matter masses in

the range 200 GeV to 3.2 TeV are covered by the intermediate resolution calculation.
For the CTA experiment, we obtain the power-law fit E

�

res
/E� = 0.0915 (E�/TeV)�0.347

from Figure 11 of [9] in the range of photon energies of interest, which is shown as
the dash-dotted line in Figure 1 together with the unapproximated resolution (solid
line). The horizontal band (dark-grey/red) represents the region of applicability of the
intermediate resolution regime, which extends to 6.8 TeV for the CTA experiment. Thus,
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1 Introduction

High-energy photons may constitute an important signal for the particle nature of dark
matter (DM) through the pair annihilation of DM particles. In order to distinguish the
DM component from the astrophysical �-ray background, one searches for the line signal
of the two-body annihilation �

0
�
0

! �� (or �Z) at (or very close to) E� = m�, where
m� is the mass of the dark matter particle, to be determined.
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electroweak charge is expected to be observed or ruled out by the Cherenkov Telescope
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0
�
0
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�
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h�vi(E�

res
) =

Z
m�

m��E
�

res

dE�

d(�v)

dE�

. (1)

The endpoint-integrated spectrum depends on the three scales m�, mW (representative
of electroweak scale masses), and E

�

res
. We consider TeV scale dark matter, hence the

hierarchy mW ⌧ m� is always assumed. The details of the resummation of electroweak
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�

res
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�
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�
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⇠ m

2

W
/m�

1

Figure 1: Energy resolution of the CTA experiment (solid black line, from [9]), and the
power-law fit E

�

res
= 0.0915 (E�/TeV)0.653 (dash-dotted) with E� = m�. The dark-grey

(red) and light-grey (blue) bands show where the intermediate and narrow resolution
resummation applies, respectively. The boundaries are defined by mW [1/4, 4] (interme-
diate resolution) and m

2

W
/m� [1/4, 4] (narrow resolution).

intermediate : E
�

res
⇠ mW

wide : E
�

res
� mW (2)

The wide resolution regime was considered in [6, 8] and resummed at the NLL order.
Due to the double hierarchy m� � E
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taneously sum the unrelated large logarithms of m�/mW and E
�

res
/mW . This procedure

requires large dark matter masses to satisfy both hierarchies. Resummation of elec-
troweak Sudakov logarithms for the narrow resolution case was accomplished in [7] at
the NLL’ order. The intermediate resolution regime has not been considered up to now.

In the present paper we close this theoretical gap. We develop the e↵ective field theory
(EFT) for the intermediate resolution regime and sum the electroweak logarithms at the
NLL’ order. We show that the result can be smoothly joined to the narrow resolution
regime to provide a precise prediction of the photon energy spectrum near m� in the
entire region from the line signal (E�

res
= 0) to E

�

res
⇡ 4mW . We also provide details and

derivations for the narrow resolution regime not given in the letter [7].
The intermediate resolution regime is relevant to present and upcoming DM searches.

For example, assuming the regime to apply to E
�

res
in [mW/4, 4mW ] the energy resolution

of the H.E.S.S. experiment E
�

res
/E� ⇡ 10% [10] implies that dark matter masses in

the range 200 GeV to 3.2 TeV are covered by the intermediate resolution calculation.
For the CTA experiment, we obtain the power-law fit E

�

res
/E� = 0.0915 (E�/TeV)�0.347

from Figure 11 of [9] in the range of photon energies of interest, which is shown as
the dash-dotted line in Figure 1 together with the unapproximated resolution (solid
line). The horizontal band (dark-grey/red) represents the region of applicability of the
intermediate resolution regime, which extends to 6.8 TeV for the CTA experiment. Thus,
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Energy resolution regimes: 

Beneke et al. ’19  
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 What is observed in e.g. H.E.S.S or 

CTA is a semi-inclusive single-photon 
energy spectrum γ + X

One additional scale in EFT: Eγ
res

Bottom line: all regimes are well studied 
- but for now only for simple models

two-step 
resummation

NLL’

NLL’

NLL

z = Eγ
res /mχ



tree level result ∼ 1/m2

with g at scale 

     with SM running

m

one-loop result

AH, R. Iengo; JHEP 1201 (2012) 163

EXAMPLE:

WINO DM @ 1-LOOP

χ0
χ0

W+

χ−

W−W+

χ0
χ0

W−W+

W−
Z, γ Z, γ

χ0
χ0

W−W+

χ0
χ0

W−W+

W±

1) 2) 3)

χ0χ0

W−W+

a)

χ0χ0

W−W+

b)

χ0χ0

W−

W+

c)

t b̄Z, γ Z, γ

χ0χ0

W−W+

4)

W+χ+ χ−

Z, γ

χ0χ0

W−W+

5)

…~2
O

(

mχ

mW

)



tree level result ∼ 1/m2

with g at scale 

     with SM running

m

tree level + Sommerfeld
one-loop + Sommerfeld

AH, R. Iengo; JHEP 1201 (2012) 163

EXAMPLE:

WINO DM @ 1-LOOP 


& SOMMERFELD EFFECT

χ0
χ0

W+

χ−

W−W+

χ0
χ0

W−W+

W−
Z, γ Z, γ

χ0
χ0

W−W+

χ0
χ0

W−W+

W±

1) 2) 3)

χ0χ0

W−W+

a)

χ0χ0

W−W+

b)

χ0χ0

W−

W+

c)

t b̄Z, γ Z, γ

χ0χ0

W−W+

4)

W+χ+ χ−

Z, γ

χ0χ0

W−W+

5)

…
O

(

mχ

mW

)

one-loop result
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LARGE EW EFFECTS

α2 log
m2

χ

m2
W

α2(log
m2

χ

m2
W )

2

&

Sudakov corrections

now @ NLL’ EW Sommerfeld effect

resummation to all orders using EFT techniques

NR DMSCET
(soft-collinear eff (non-relativistic DM EFT) 

Schroedinger eq. for G’sRG for Wilson coeff

Baugmart et al. ’14; Bauer et al. ’14;

Ovanesyan et al. ’14, ’16, …

Hisano et al. ’04, ’05, ’06, ’07,; … ; 
Beneke et al. ’12, ’13, ’15; …

α2
mχ

mW



Arkani-Hamed et al. ’09  

1

mφ
!

1

αmχ

mχv
2 ! α

2
mχ

one-loop ∝ α

mχ

mφre-summation

kinetic 

energy

Bohr 

energy

force

range

Bohr 

radius

in a special case of Coulomb force: S(v) =
πα/v

1− e−πα/v
≈ π

α

v

σSE = S(v)σ0

SOMMERFELD EFFECT
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Hisano et al. ’04,’06force carriers in the MSSM:
γ, W±, Z0, h0

1, h
0

2, H
±

W+

χ0

χ0
χ−

χ+ χ0 χ0 χ+ χ0

Z0, h0 · · ·
W+ W+

γ

H+ H+
Z0

h0

χ+χ+

δm ! mχ

mχ ! mW

)at TeV scale generically effect of O(1� 100%)

on top of that resonance structure

effect of O(few)
for the relic density

20

THE SOMMERFELD EFFECT�
FROM EW INTERACTIONS

AH, R. Iengo, P. Ullio. ’10

AH ’11
AH et al. ’17, M. Beneke et al.; ’16

can be understood as being close to 
a threshold of lowest bound state
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22 Bethe-Salpeter equation Chapter 4

G
(4)

c

d

a

b

=

c

d

a

b

+

c

d

a

b

W

+

c

d

a

b

WW + · · ·

=

c

d

a

b

+

c

d

a

b

W G
(4)

Figure 4.1: The diagrammatic expansion of the four point correlation func-

tion G(4)
. The first term gives the non connected diagrams, where there is

no interactions between the two particles. The remaining terms are the fully

connected scattering diagrams in terms of 1PI kernels W . Using the proper-

ties of infinite sums we can rewrite the sum on the right hand side in terms

of G(4)
giving us an integro-di↵erential equation describing the exact full four

point correlation function. The a, b, c, d indices signify the spinor index each

external fermion line has.

4.1 Derivation of the Bethe-Salpeter equation

As with the Källén-Lehmann decomposition we want to have a complete set of
states to decompose the correlation function into. For this we use the bound and
free states introduced in chapter 3.1 to create the completeness relation

1 =
X

n

Z
d
3
Q

(2⇡)32!q,n
|BQ,ni hBQ,n|+

Z
d
3
q

(2⇡)3
d
3
Q

(2⇡)3
1

2!Q,q2"Q,q
|UQ,qi hUQ,q| ,

(4.2)
with the relativistic normalization hp|ki = 2Ep(2⇡)3�3(p � k) where Ep is the
energy of the one particle state |pi. The " is just to indicate that it is con-
nected to the normalization of the second continuous variable but is otherwise
identical to !. For fermions, these states represent a specific spinor states. The
normalizations give to lowest order

2!Q,q2"Q,q ' 2E1(q;Q)2E2(q;Q). (4.3)

to be consistent in the non-relativistic limit.

Two options
Non-relativistic EFT

Bethe-Salpeter eq.Dyson-Schwinger eq.

potential region
Schroedinger eq.

for 2-body 
wave-function

G(4)(p, p′￼) = (2π)4δ(4)(p − p′￼)S(p) + S(p)∫
d4q

(2π)4
W(p, q)G(4)(q, p′￼)

potential 

e.g. Yukawa-type


in instantaneous approx.

gives 2-body 

wave-function

Outcome: modified 2-body wave-functions that are then 
used to compute the cross sections with SE



• suitable for (large scale) scans

• implemented full MSSM

• one-loop on-shell mass splittings and 

running couplings

• the Sommerfeld effect for P- and  

O(v2) S-wave

• off-diagonal annihilation matrices

• present day annihilation in the halo (for ID)

• possibility of including thermal corrections

• …

• accuracy at O(%), dominated by theoretical 

uncertainties of EFT

NEW NUMERICAL TOOL

22

loop through points from
parameter file, for each point:

call FeynHiggs to com-
pute the Higgs masses

running couplings.m
runs the couplings

diagonalise masses.m
calculates the mass spectra

masscorrections-routines.m
calculates the mass corrections

generateGammas.m computes
tree level annihilation matrices

generateSEanalysis.m
computes Sommerfeld fac-
tors and the relic density

parametersets.m

/pointgeneration/
filebasename.slha

/masscorrections/
filebasename-loop.slha

/annmatrices/
filebasename-am.m

/SEanalysis/
filebasename-analyzed.m

Figure 1: The work flow of our program

5

not present 
in DarkSE

Status: all works as intended, making the code ready for public release

AH, ’11

based on EFT, improving accuracy in numerous ways

Beneke,…, AH,… et al. in preparation

}



resonance moves 
to the right


w.r.t. pure wino
actual 


cross section

correct RD can be achieved:

when varying sfermion masses

Limits:

AMS leptons

CMB limits 
from Planck

Fermi + 
MAGIC 

dSphs

Antiproton

fits:

Thin 

prop. model

Thick 

prop. model

similar study, pure Wino case: Ibe et al. ’15  

EXAMPLE RESULT�
WINO-HIGGSINO POINT

Beneke, …AH, … et al., ’16
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1.8 TeV42 2.4 3.32.81.7

lig
ht s

f.

co-annihilations?
resonance

resonance

”pure wino”
heav

y s
f.

co-annihilations? pure wino
wino-like (higgsino)
wino-like (bino)

Q: what is the mass of Wino-like neutralino in the MSSM 
that gives the correct thermal relic density?

see e.g. Roszkowski et al. ’14

EXAMPLE:

WINO DM

24

(this is the most studied case: simple & large effect)

”tree-level pure wino”
A:



DM bound statefree DM states

BOUND STATE FORMATION

X1

X2

¨ ¨ ¨ ¨ ¨ ¨ B

g

C⌫

Figure 1a: The amplitude for the radiative capture consists of the (non-perturbative) initial and final
state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.

rC⌫saii1,jj1 “
i

j

⌘1K ` q

⌘2K ´ q

a, ⌫
b, ⇢

c, µ

Pg

⌘1P ` p

⌘2P ´ p

i1

j1

` `

Figure 1b: The leading order diagrams contributing to the radiative capture into bound states via gluon
emission. The external-momentum, colour-index and space-time-index assignments are the same in all
three diagrams.

that appear in eq. (2.16), q0 and p0 are determined by the poles of C⌫ , upon the integration denoted
in eq. (2.17). The total 4-momenta of the scattering state, the bound state and the radiated gluon,
K, P and Pg respectively, essentially contain all the (discrete and continuous) quantum numbers that
fully specify the system. In the non-relativistic regime, they can be expressed as

K “
ˆ
M ` K2

2M
` Ek, K

˙
, (2.19a)

P “
ˆ
M ` P2

2M
` En`, P

˙
, (2.19b)

Pg “ p!, Pgq , (2.19c)

where Ek “ k2{p2µq “ µv2rel{2 is the kinetic energy of the scattering state in the CM frame, with
vrel being the relative velocity of the interacting particles, and En` † 0 is the binding energy of the
bound state. Note that Mn` ” M ` En` is the mass of the bound state. For a Coulomb potential,
En` “ ´2{p2n2µq, with  ” µ↵B

s (cf. appendix A). Energy-momentum conservation, K “ P ` Pg,
implies

! “ |Pg| » Ek ´ En` . (2.20)

The leading order contributions to rC⌫saii1,jj1 are shown in fig. 1b. We compute them next using
the Feynman rules from [55].

Emission from the mediator

ipC⌫
medqaii1,jj1 “ S1p⌘1P ` pq

“
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
‰
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq r´igs pT c
2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµsS2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫
`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

7

25

*the effect was first studied in simplified models with light mediators, then gradually 
extended to non-Abelian interactions, double emissions, co-annihilations, etc.

see papers by K. Petraki et al. ’14-19

As noticed before Sommerfeld effect has 
resonances when Bohr radius ~ potential range, 

i.e. when close to a bound state threshold

Can DM form 

actual bound states from such 

long range interactions?

Yes, it can!

Q:  How to describe such bound states and their formation?

*vide also ”WIMPonium”
March-Russel, West ’10



HOW TO CALCULATE BSF?

26

Two options
Non-relativistic EFT

Bethe-Salpeter eq.Dyson-Schwinger eq. Schroedinger eq.

We define the Fourier transforms of G,W, S1 and S2,

G̃(4)(p, p0;Q) ⌘

Z
d4x d4y d4(X � Y )G(4)(x, y;X � Y ) exp(ipx� ip0y) exp [iQ(X � Y )] , (2.23)

W̃ (p, p0;Q) ⌘

Z
d4x d4y d4(X � Y )W (x, y;X � Y ) exp(ipx� ip0y) exp [iQ(X � Y )] , (2.24)

and

S̃j(p) =

Z
d4z eipz Sj(z) , (2.25)

with S̃j(p) being the momentum-space propagator for �j . From the above, we deduce the relation
between the conjugate momenta of x1, x2, which we shall call here p1, p2, and the conjugate momenta
of x,X, denoted above as p,Q:

Q = p1 + p2, p = ⌘2p1 � ⌘1p2 , (2.26)

p1 = ⌘1Q+ p, p2 = ⌘2Q� p . (2.27)

Analogous relations hold between the conjugate momenta of y1, y2 and those of y, Y .
For convenience, we also define

S(p;Q) ⌘ S̃1(⌘1Q+ p) S̃2(⌘2Q� p) . (2.28)

We may now rewrite the Dyson-Schwinger Eq. (2.22) for the 4-point function, in momentum space

G̃(4)(p, p0;Q) = (2⇡)4�4(p� p0) S(p;Q) + S(p;Q)

Z
d4q

(2⇡)4
W̃ (p, k;Q) G̃(4)(k, p0;Q) . (2.29)

We shall use Eq. (2.29) to derive the Bethe-Salpeter equation for the wavefunctions of Sec. 2.1.

2.3 Completeness relation and decomposition of the 4-point function

To compute the Bethe-Salpeter wavefunctions of Sec. 2.1, we have to decompose the 4-point Green’s
function of Sec. 2.2 using the one- and two-particle completeness relation. Then, Eq. (2.29) will
yield the equations which the wavefunctions  Q,n and �Q,q satisfy.

Including the one- and two-particle states with the same quantum numbers as �1 and �2, the
completeness relation is

1 =
X

n

Z
d3Q

(2⇡)3 2!Q,n
|BQ,nihBQ,n|+

Z
d3q

(2⇡)3
d3Q

(2⇡)3
1

2!Q,q 2"Q,q
|UQ,qihUQ,q| , (2.30)

where we have assumed the standard relativistic normalization of one-particle momentum eigen-
states hp|ki = 2Ep (2⇡)3�3(p � k), with Ep being the energy of the state |pi. To lowest (zeroth)
order in the interaction strength,

2!Q,q2"Q,q ' 2E1(q;Q) 2E2(q;Q) , (2.31)

where
E1(q;Q) ⌘

q
(⌘1Q+ q)2 +m2

1 , E2(q;Q) ⌘
q
(⌘2Q� q)2 +m2

2 . (2.32)

Next, we insert the unity operator of Eq. (2.30) in G(4), to obtain the decomposition

G(4)(x, y;X � Y ) =
X

n

G(4)
n (x, y;X � Y ) +G(4)

U (x, y;X � Y ) , (2.33)

where G(4)
n (x, y;X�Y ) and G(4)

U (x, y;X�Y ) are the contributions of the bound and the scattering
states, respectively. We compute them below. We shall make use of the fact that a non-zero

– 7 –

Outcome: modified 2-body bound and free wave-functions

36 General cross-section calculation Chapter 5

G̃
(5)

P'

⌘1K + k

⌘2K � k

⌘1P + p

⌘2P � p Ã
(5)

G̃
(4)

G̃
(4)

P'

⌘1K + k

⌘2K � k

⌘1P + p

⌘2P � p

Figure 5.1: The expansion of the five point correlation function G̃(5)
in

terms of four point correlation functions G̃(4)
, the full propagator of the force

mediator, and a fully amputated, hard scattering five point function Ã
(5)

.

Using the established relative coordinates (3.5)-(3.6) and the decomposition in
figure 5.1, the five point correlation function in momentum space can be written

G̃
(5)
ab;cd(P', ⌘1P + p, ⌘2P � p; ⌘1K + k, ⌘2K � k) =

S̃'(P')

Z
d
4
p
0

(2⇡)4
d
4
k
0

(2⇡)4
G̃

(4)
ab;ef (p, p

0;P )(2⇡)4�4(K � P � P')i

⇥A
(5)
ef ;gh(P', ⌘1P + p

0
, ⌘2P � p

0; ⌘1K + k
0
, ⌘2K � k

0)G̃(4)
gh;cd(k

0
, k;K) (5.3)

where

S̃'(P') =
iZ'

P 2
'
�m2

'
+ i✏

(5.4)

is the ' field propagator with Z' being the field strength renormalization factor
for '. Extracting the S-matrix element in the limit

P
0
'
! !'(P'), P

0
! !P,n, K

0
! !K,k, (5.5)

using the LSZ reduction formula for the left hand side of (5.3) we get
Z

d
4
X'd

4
Xd

4
Y d

4
xd

4
ye

i(P'X'+PX�KY )
e
i(px�qy)

⇥G
(5)
ab;cd(X', X + ⌘2x,X � ⌘1x;Y + ⌘2y, Y � ⌘1y)

⇠

"
i
p

Z'(P')

2!'(P')(P 0
'
� !'(P') + i✏)

#"
i ̃P,n,ab(p)

2!P,n(P 0 � !P,n + i✏)

#
⇥

⌦
BP,n;'P' |S|UK,k

↵ Z d
3
k
0

(2⇡)32"K.k

i�̃?

K.k0
,cd
(q)

2!K.k0(K0 � !K.k0 + i✏)
, (5.6)

where we have used the definitions of the relativistic two-particle wavefunction
(4.4) and (4.7). The LSZ reduction formula is based on the same expansion as

„F” of BSF is not easy, but see e.g. Asadi et al. ’17

5-point function with 
one particle emission

Factorization of hard and 
potential parts

Decomposition on complete set of states contains both bound and free states
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BSF 

FOR TEV SCALE WIMP

⇒

Electroweak interactions are stronger and longer ranged than Higgs mediated… 
but also more complicated (non-Abelian + massive mediators)

here as far as I know work is still in progress…

Higgs mediated Could lead to DM bound states, but for usual TeV 
DM models, biggest effect observed is more indirect

e.g. produces tighter bound states of squarks - less inefficient 
dissociation - more efficient DM depopulation

J. Harz and K. Petraki ’19
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Figure 7: Left panel: The mass splitting �m between DM and its coloured co-annihilating partner, that
is required to obtain the observed DM density. The blue dotted band takes into account perturbative
annihilation only, the purple dashed band incorporates the Sommerfeld e↵ect on the direct annihilation,
and the yellow solid band includes also the e↵ect of bound-state formation and decay. The width of the
bands arises from the 3� uncertainty on the DM density. Right panel: The impact of the Sommerfeld
e↵ect and bound-state formation on the DM density. �m is fixed with respect to m� along the yellow
solid band of the left panel. We present the ratios of the relic densities predicted by perturbative
annihilation only (blue dotted line) and by Sommerfeld-enhanced annihilation (purple dashed line), to
the relic density predicted by the full computation that includes the e↵ect of bound states.

4 Conclusion

Long-range interactions imply that non-perturbative e↵ects and a variety of radiative processes come
into play. Here, we have considered the radiative capture of non-relativistic particles into bound states,
in unbroken non-Abelian gauge theories, in the regime where the gauge coupling is perturbative. This
can be important in multi-TeV WIMP DM scenarios, in scenarios where DM co-annihilates with
coloured particles, as well as in hidden sector models.

Our main results include the amplitude for the radiative formation of bound states via one-gluon
emission, for arbitrary representations and masses of the interacting particles [cf. eq. (2.25)], and the
BSF cross-sections for particles transforming in conjugate representations [cf. eqs. (2.42)].

As a first application of our results, we considered a simplified model where DM coannihilates
with particles transforming in the fundamental of SUp3qc, and showed that the formation and decay
of particle-antiparticle bound states can a↵ect the DM relic density very significantly. This implies
larger DM mass and/or mass splitting between DM and its coannihilating particles, thereby altering
the interpretation of the experimental results, and a↵ecting the detection prospects. In particular,
larger mass splittings imply the production of harder jets that can be more easily probed in collider
experiments. Moreover, larger DM masses motivate indirect searches in the multi-TeV regime.

While the analytical formulae (2.42) assume a Coulomb potential, it is straightforward to generalise
our results to other potentials, by computing the overlap integrals (2.26) using the wavefunctions
arising from those potentials. This allows to include, for example, thermal masses for the gauge
bosons, as well as the e↵ect of multiple force mediators. The latter has been shown to be important
in models where the (co-)annihilating particles possess a significant coupling to the Higgs [49, 59]. We
leave these extensions for future work.

20

significant modification of the 
annihilation rate - large effects on the 
DM models, especially in the TeV scale

but e.g.: co-annihilation with squarks

and QCD squark bound states

J. Harz and K. Petraki ’18



• DM and the WIMP paradigm
• Short review of the current status

• General overview

• Large Logs and resummation

• Sommerfeld eff

• Direct detection, LHC, …

• Indirect: gamma-rays, CRs, radio, …

1. Introduction

3. Observational prospects

4. Summary

OUTLINE
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2. DM theory at the TeV scale



COLLIDER & DIRECT DETECTION

29

Sensitivity for spin-independent cross sections

• E = [3-70] pe ~ [4-50] keVnr

DARWIN: 200 t y exposure, 99.98% discrimination, 30% NR acceptance, LY = 8 pe/keV at 122 keV

Note: “nu floor” = 3-sigma detection line at 500 CNNS events above 4 keV 35
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Figure 14: Summary of collider reach for neutralino dark matter.

while the discovery reach ranged from 350 � 700 GeV. Mixed dark matter parameter space

already receives strong constraints from direct detection and a more thorough study on the

impact of collider searches on this parameter space would be worthwhile.

Finally bino dark matter was studied, bringing various coannihilators into the spectrum to

avoid overclosing the universe. These scenarios utilized the monojet search to project reach.

The stop coannihilation exclusion reach was found to be m�̃ ⇠ 2.8 TeV and the discovery

reach to bem�̃ ⇠ 2.1 TeV. As the thermally-saturating bino mass in this case ism�̃ ⇠ 1.8 TeV

(and mt̃ ⇠ 1.8 TeV), dark matter can be either excluded or discovered in this channel. The

gluino coannihilation, on the other hand, was found to only reach the thermal bino mass for

a splitting of �m = 30 GeV, corresponding to m�̃ ⇠ 6.2 TeV and mg̃ ⇠ 6.23 TeV, so the

thermal parameter space is not entirely closed. Finally squark coannihilation can be excluded

up to m�̃ ⇠ 4.0 TeV and stau coannihilation cannot be probed in the monojet channel.

In addition to the aforementioned interplay with mixed dark matter and neutralino blindspots,

useful future work would be to look at how adding in more search channels can improve the

dark matter collider reach. Such searches would include monophoton searches, razor searches,

vector boson fusions searches, and multilepton searches. Another principal direction to ex-

tend these studies would be to look at the impact of bringing down other particles into the

low energy spectrum.

– 20 –

Low, Wang ’14

Mixed hopes for TeV regime… 
even at 100 TeV collider

In Direct Detection expected 
event rate drops for TeV masses 

(lower number density) and many 
models give predictions below 

neutrino floor

(the plot shows in case of SUSY, but 
analogous results for generic WIMP)



GAMMA RAYS
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• ROI extends up to        from the GC both in longitude and latitude


• We derived CTA Southern array sensitivity using:


• latest instrument response functions


• 3-dim. log likelihood ratio test statistics


• Three different choices of the DM Galactic halo profile: Einasto, NFW and Cored Einasto 
(rcore = 3 kpc) 

Rich science program in multi-TeV gamma rays, mostly based on Cherenkov light detection 
(H.E.S.S., MAGIC, VERITAS, HAWC and soon CTA)

Considering new data updates and all of the theory improvements above, 

it is about time for an update of the prospects for heavy neutrinos detection

±5∘

AH, K. Jodłowski, E. Moulin, L. Rinchiuso, L. Roszkowski, E. Sessolo, S. Trojanowski;  ’19



MSSM SCAN RESULTS
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Wino - already excluded (?)

Higgsino

~ 1 TeV region

most promising

candidate in MSSM

Bino-wino

In reach of monochromatic

line search

Bino

Require 
additional 
mechanism (e.g. 
co-annihilation)



COMPLEMENTARITY WITH DD

32
)

• Wino and Higgsino regions will be probed in the majority of cases, corresponding to:


• spin-independent scattering cross section below the reach of 1-tonne underground 
detector searches


• even well below the irreducible neutrino background

• Higgsinos in the ~1 TeV region are good thermal DM candidates


• Not directly constrained by collider and DD searches            complementarity



ONE DETAIL: 

HOW TO GET LIMITS FOR POINT WITH GENERIC BRS?

33

Typically limits are given for annihilation only to one channel, e.g.

numerical difference 
between two approaches

colors: BRs

7 benchmark points

…the difference is not large, but worth keeping in mind

combining limits using BRs     vs     combining spectra 

                     and recalculating limits

bb̄
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CMB & OTHERS
Planck Collaboration: Cosmological parameters
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Fig. 46. Planck 2018 constraints on DM mass and annihilation cross-section. Solid straight lines show joint CMB constraints on
several annihilation channels (plotted using di↵erent colours), based on pann < 3.2 ⇥ 10�28 cm3 s�1 GeV�1. We also show the 2�
preferred region suggested by the AMS proton excess (dashed ellipse) and the Fermi Galactic centre excess according to four
possible models with references given in the text (solid ellipses), all of them computed under the assumption of annihilation into bb̄
(for other channels the ellipses would move almost tangentially to the CMB bounds). We additionally show the 2� preferred region
suggested by the AMS/PAMELA positron fraction and Fermi/H.E.S.S. electron and positron fluxes for the leptophilic µ+µ� channel
(dotted contours). Assuming a standard WIMP-decoupling scenario, the correct value of the relic DM abundance is obtained for a
“thermal cross-section” given as a function of the mass by the black dashed line.

The 95 % CL preferred region for the AMS anti-proton excess
is extracted from Cuoco et al. (2017b,a). The DM interpretation
of the Fermi Galactic centre excess is very model-dependent
and, as in figure 9 of Charles et al. (2016), we choose to show
four results from the analyses of Gordon & Macias (2013),
Abazajian et al. (2014), Calore et al. (2015), and Daylan et al.
(2016). For the Fermi Galactic centre excess and the AMS anti-
proton excess, we only show results assuming annihilation into
bb̄, in order to keep the figure readable. About 50 % of the region
found by Abazajian et al. (2014) is excluded by CMB bounds,
while other regions are still compatible. The 95 % CL preferred
region for the AMS anti-proton excess is still compatible with
CMB bounds for the bb̄ channel shown in the figure, and we
checked that this is also the case for other channels.

8. Conclusions

This is the final Planck collaboration paper on cosmological pa-
rameters and presents our best estimates of parameters defining
the base-⇤CDM cosmology and a wide range of extended mod-
els. As in PCP13 and PCP15 we find that the base-⇤CDM model
provides a remarkably good fit to the Planck power spectra and
lensing measurements, with no compelling evidence to favour
any of the extended models considered in this paper.

Compared to PCP15 the main changes in this analysis
come from improvements in the Planck polarization analysis,
both at low and high multipoles. The new Planck polariza-
tion maps provide a tight constraint on the reionization op-
tical depth, ⌧, from large-scale polarization (and are consis-
tent with the preliminary HFI polarization results presented
in Planck Collaboration Int. XLVI (2016)). This revision to the
constraint on ⌧ accounts for most of the (small) changes in pa-
rameters determined from the temperature power spectra in this
paper compared to PCP15. We have characterized a number of
systematic e↵ects, neglected in PCP15, which a↵ect the polar-
ization spectra at high multipoles. Applying corrections for these

systematics (principally arising from errors in polarization e�-
ciencies and temperature-to-polarization leakage) we have pro-
duced high multipole TT,TE,EE likelihoods that provide sub-
stantially tighter constraints than using temperature alone. We
have compared two TT,TE,EE likelihoods that use di↵erent as-
sumptions to correct for polarization systematics and find con-
sistency at the <⇠ 0.5� level. Although the TT,TE,EE likelihoods
are not perfect, the Planck parameter results presented in this pa-
per can be considered accurate to within their error bars.

Our main conclusions include the following.
• The 6-parameter base-⇤CDM model provides a good fit to

the Planck TT, TE, and EE power spectra and to the Planck
CMB lensing measurements, either individually or in combina-
tion with each other.
• The CMB angular acoustic scale is measured robustly at

0.03 % precision to be ✓⇤ = (0.�5965 ± 0.�0002), and is one of
the most accurately measured parameters in cosmology, of com-
parable precision to the measurement of the background CMB
temperature (Fixsen 2009).
• The Planck best fit base-⇤CDM cosmology is in very good

agreement with BAO, supernovae, redshift-space distortion mea-
surements and BBN predictions for element abundance observa-
tions. There is some tension (at about 2.5�) with high-redshift
BAO measurements from quasar Ly↵ observations, but no stan-
dard extension of the base-⇤CDM cosmology improves the fit
to these data.
• The new low-` polarization likelihood tightens the reioniza-

tion optical depth significantly compared to the 2015 analysis,
giving ⌧ = 0.054 ± 0.007, suggesting a mid-point reionization
redshift of zre = 7.7 ± 0.7. This is consistent with astrophysi-
cal observations of quasar absorption lines and models in which
reionization happened relatively fast and late. We investigated
more general models of reionization and demonstrated that our
cosmological parameter results are insensitive to residual uncer-
tainties in the reionization history.

60

Planck Collab. ’18
are lots of parameter spaces available to be probed in SKA. The such extreme cases, it is
of course necessary to have a dark sector that allows high co-annihilation rates, so that the
observed relic density bound is not excluded.

Figure 10: Lower limits (colored bands) in the h�vi � m� plane to observe a radio signal
from Draco dSph at SKA with 100 hours, for various DM annihilation channels along with
95% C.L. upper limits from Cosmic-ray (CR) antiproton observation (dashed lines) [29] and
6 years of Fermi-LAT (FL) data (dotted lines) [28]. The value of the di↵usion coe�cient
(D0) is 3 ⇥ 1028cm2s�1. The bands represent the variation of the magnetic field B from a
conservative value B = 1 µG (lower part of the bands) to a more conservative value B = 0.1
µG (upper part of the bands).

In the context of DM model dependent analysis three benchmark points, named as
Model A1a, B2a and E, from earlier work [36] have been considered here. These benchmarks
are corresponds to minimal super symmetric standard model (MSSM) scenario where the
lightest neutralino (�0

1) is the DM candidate (�). In table 1 we have listed the possible
annihilation channels with branching fractions, DM masses (m�0

1
) and annihilation rates

(h�vi) calculated in these benchmark points. All these quantities have been calculated using
micrOMEGAs [48, 61]. Neutralino and all other supersymmetric particle masses in these
three cases are in the trans-TeV range. All of these benchmarks produce relic densities
within the expected upper and lower limit [1, 2, 62, 63] and satisfy constraints coming from
direct DM searches [3, 4], collider study [64], lightest neutral Higgs mass measurements [65]

– 17 –

Kar et al ’19

keep an eye on SKA
(I would take these prospects with grain 
of salt, but if SKA is indeed built, it has 
potential of significantly pushing the 

limits, also in the TeV regime)

There are other ID channels, e.g. in 
CRs, that can constrain (or give a signal) 
of TeV scale DM. But keep in mind that 
CMB limits are comparable and need to 

be reckoned with
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CONCLUSIONS

3. Although compared to previous decades, not many causes 
for optimism on the detection prospects… with CTA starting 
in few years, consecutive DD detector upgrades and future 
planned experiments/observations, there is some place for 
hope for a breakthrough

2. The relatively minor change of the energy scale (from 
10-100 GeV to 1-100 TeV) shows how careful we need to be 
on the theory side when determining predictions for DM 
properties - broad-brush conclusions can be quite misleading 

(if looking only on the TeV DM; if instead widening range 
to other regimes much more activity ahead) 

1. Most up to date status of heavy neutrinos in the MSSM was 
presented together with prospects for CTA, including both 
new data and theoretical developments



BACKUP
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PROJECTED CTA LIMITS

37

• ROI extends up to        from the GC both in longitude and latitude

• We derived CTA Southern array sensitivity using:


• latest instrument response functions

• 3-dim. log likelihood ratio test statistics


• Three different choices of the DM Galactic halo profile: Einasto, 
NFW and Cored Einasto (rcore = 3 kpc) 

±5∘

AH et al. ’19
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EXAMPLE:

IMPACT ON THE UNITARITY BOUND

Conservation of probability

(for any partial wave)

3

with BR(Bi ! SM) =
�ann

�ann + �break

=

"
1 +

h�Ivrelig2� M3

DM
e�z EBI

/MDM

2gI (4⇡z)3/2 �ann

#�1

, (3)

where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,

YDM(1) =
1

�

 Z 1

zf

h�e↵vreli(z)

z2
dz +

h�e↵vreli(zf )

z2f

!�1

,

(4)

with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln

✓
2g�h�e↵vreli(zf )�

(2⇡zf )3/2

◆
. (5)

For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10) re-
duction. This is not surprising, since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by

(�vrel)
J
total

< (�v)J
max

=
4⇡(2 J + 1)

M2

DM
vrel

. (6)

Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state for-
mation. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

)

Griest and Kamionkowski ’89

) upper limit on DM mass if thermally produced: MDM < 340 TeV

With the bound state annihilation taken into account:

(see also von Harling, Petraki ’14, Cirelli et al. ’16, …)

(for a Majorana 
fermion and )Ωh2 = 1

” ”
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where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,
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with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln
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For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10)
reduction. This is not surprising since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by
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=
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DM
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Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state forma-
tion [49]. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

but some of the bound states dissociate 
before they are able to annihilate! )
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where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,
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with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln
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For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10)
reduction. This is not surprising since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by

(�vrel)
J
total

< (�v)J
max

=
4⇡(2 J + 1)

M2

DM
vrel

. (6)

Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state forma-
tion [49]. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

overestimates the cross 
section in the Boltzmann eq.

)

maximal attainable mass for 
thermal DM is lower)

Smirnov, Beacom ’19

MDM < 144 TeV
(for a Majorana fermion)

MDM < 200 TeV(updated)
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S0)] ĝaa(1
S0)

+ Sa [ĝŸ(3
S1)] 3 ĝaa(3
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Sommerfeld factors:

absorptive parts of the Wilson coefficients of local 
4-fermion operators

Sommerfeld factors 

computed by solving 

Schroedinger 

eq. for  (L,S)

ba

The full cross section:

Details of the Calculation
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Idea: treat every possible interaction separately

compute potentials and obtain

set of Schrodinger eqns.:

R. Iengo, JHEP 0905 (2009) 024  

with:
notation:

x = p r

δmij = mi′ +mj′ − (mi +mj)

Sij = |∂xϕij(x)|
2

x=0

and solving for:

SOMMERFELD FACTORS�
THE METHOD


