SPECTRAL FEATURES IN THE MEV-GAP

Andrzej Hryczuk University of Oslo*

work in collaboration with: Torsten Bringmann, Ahmad Galea and Christoph Weniger

Warsaw workshop on Non-Standard DM, 4th June 2016

* on leave from National Centre for Nuclear Research, Warsaw, Poland

SPECTRAL FEATURES WHY ARE THEY SO IMPORTANT?

1. Improve signal/background (significantly helps in spectral fits)

2. Hugely increase the credibility of the DM origin of a signal (systematics + interpretation)

 Significantly increase possibility of inferring the DM properties from a measured signal
(e.g. gamma line would pin-point the DM mass)

SPECTRAL FEATURES WHAT CAN WE LOOK FOR?

Gamma-ray lines $\chi \chi \to \gamma \gamma$

generically loopsuppressed Internal Bremsstrahlung

$$\chi\chi\to ff\gamma$$

Box-shaped $\chi\chi \to \phi\phi \implies \phi \to \gamma X$

tree-level; cascade decay

SPECTRAL FEATURES WHAT CAN WE LOOK FOR?

Gamma-ray lines $\chi \chi \rightarrow \gamma \gamma$ generically loopsuppressed

Internal Bremsstrahlung

$$\chi\chi\to \bar{f}f\gamma$$

Box-shaped $\chi\chi \to \phi\phi \implies \phi \to \gamma X$ tree-level; cascade decay

GAMMA-RAY BOXES

 $E_{\gamma}^{\text{lab}} = \frac{1}{\rho} \delta m_{\chi} (1 + \beta \cos \theta)$ If ϕ produced at rest \longrightarrow monochromatic line...

... if not, boosted to give a box shaped spectrum:

$$\frac{dN_{\gamma}}{dE} = \frac{2}{\Delta E} \left[\Theta(E - E_{-}) - \Theta(E - E_{+})\right]$$

(For narrow boxes I may use the box and line terms interchangeably...)

KNOWN GAMMA-RAY LINES

MEV-GAP

Experiment	E range	Characteristics
GAMMA-400	100 MeV - 3 TeV	A _{eff} = 3000cm ² , dE optimized for high E
ΑΡΤ	100 MeV -100 GeV	$A_{eff} = 3-4 \times 10000 \text{ cm}^2$
AdEPT	5 - 200 MeV	PSF ~ 0.5deg, <mark>dE ~ 15-30%</mark>
ASTROGAM	0.3 MeV - 1 GeV	dE ~ 1%, PSF < 1deg
GAMMA- LIGHT	10 MeV - 10 GeV	PSF ~1deg, A _{eff} ~ few 100cm ²
GRIPS	200 keV - 80 MeV	dE ~ 1%, PSF ~ 1.5deg, A _{eff} = 195cm ²
PANGU	10 MeV - 1 GeV	PSF ~ 0.3deg, <mark>dE like <i>Fermi</i></mark>

At this energy range: ID is + the best available strategy

high backgrounds are there any spectral from astrophysics ⁼ features that would help?

MEV-GAP

Experiment	E range	Characteristics
GAMMA-400	100 MeV - 3 TeV	A _{eff} = 3000cm ² , dE optimized for high E
APT	100 MeV -100 GeV	$A_{eff} = 3-4 \times 10000 \text{ cm}^2$
AdEPT	5 - 200 MeV	PSF ~ 0.5deg, dE ~ 15-30%
ASTROGAM	0.3 MeV - 1 GeV	dE ~ 1%, PSF < 1deg
GAMMA- LIGHT	10 MeV - 10 GeV	PSF ~1deg, A _{eff} ~ few 100cm ²
GRIPS	200 keV - 80 MeV	dE ~ 1%, PSF ~ 1.5deg, A _{eff} = 195cm ²
PANGU	10 MeV - 1 GeV	PSF ~ 0.3deg, <mark>dE like <i>Fermi</i></mark>

At this energy range: ID is + the best available strategy

high backgrounds are there any spectral from astrophysics ⁼ features that would help?

MEV-GAP

+

At this energy range: ID is the best available strategy

high backgrounds _ are there any spectral from astrophysics ⁼ features that would help?

HOW TO GET O(MEV) LINE?

Typically gamma-lines at such small DM masses have to be extremely weak, otherwise would be already excluded

But there is also another, quite striking possibility...

MESON SPECTROSCOPY

Transitions between meson states lead to monochromatic pions or photons:

Can such states be produced in DM annihilation?

Can such lines be detected?

B AND D MESONS

B and D mesons are composed from one light and one heavy quark

can be produced in annihilation to $b\bar{b}$ and $c\bar{c}$

do not show up in astrophysical background

SPECTRA DM ANNIHILATION INTO B-QUARKS

Close to threshold: very narrow box features → effectively a line

SPECTRA DM ANNIHILATION INTO B-QUARKS

Close to threshold: very narrow box features → effectively a line

SPECTRA DM ANNIHILATION INTO B-QUARKS

More above the threshold: box feature becomes wider and less pronounced

feature thickness strongly dependent on the mass → possibility of accurate mass determination

SPECTRA DM ANNIHILATION INTO C-QUARKS

Phenomenology Limits example

fake data power-law with index = -2

Instrument:

- A_{eff} = 1000 cm²
- dE = 1%
- E range = 30-800 MeV

ROI:

- Draco
- ang. size 0.25°
- J-factor = $10^{18.8} \text{ GeV}^2 \text{ cm}^{-5}$

if no systematics:

the line has mild effect...

... but with systematics included limits on the "bump" much weaker, but not for the line work in progress... 13

PHENOMENOLOGY SENSITIVITY FOR LINE DETECTION

 $m_{DM} = 5.326 \text{ GeV}$
Draco, no systematics \checkmark
 σv sensitivitydE = 1%, t = 1 year $4.02 \times 10^{-26} \text{ cm}^3/\text{s}$ dE = 1%, t = 10 years $8.10 \times 10^{-28} \text{ cm}^3/\text{s}$ dE = 5%, t = 10 years $1.17 \times 10^{-26} \text{ cm}^3/\text{s}$

example of parameter determination: line vs. bump only

generated fake data: $m_{DM} = 5.326 \text{ GeV}, 100\% b\overline{b}$ signal reconstruction: free m_{DM} and $BR_{bb vs uu}$

line significantly helps in inferring DM parameters

(if strong enough to be detected)

- 1. We identified new spectral features in gamma-ray DM searches from transitions between meson states, with potentially interesting phenomenology
- 2. Based on SM physics alone, they are present for generic DM model however, they are pronounced only in close to threshold scenarios
- 3. For B and D mesons, the box is hiding behind extended component but still can help in detection & determination of the DM parameters

Takeaway: Meson spectral features could significantly increase robustness of light DM detection and help in determination of its parameters