

NON-EQUILIBRIUM EFFECTS IN THE EVOLUTION OF DARK MATTER

Andrzej Hryczuk

based on: T. Binder, T. Bringmann, M. Gustafsson and AH <u>1706.07433</u> A. Hektor, AH and K. Kannike <u>1901.08074</u>

+ work in progress with T. Binder, T. Bringmann, M. Gustafsson

45. Zjazd Fizyków Polskich

Kraków, 14th September 2019

DARK MATTER

MOTIVATION Thermal Relic Density

Theory:

I. Natural

Comes out automatically from the expansion of the Universe

Naturally leads to cold DM

II. Predictive

No dependence on initial conditions Fixes coupling(s) \Rightarrow signal in DD, ID & LHC

III. It is <u>not</u> optional

Overabundance constraint

To avoid it one needs quite significant deviations from standard cosmology

Experiment:

... as a constraint:

...as a target:

"(...) besides the Higgs boson mass measurement and LHC direct bounds, the constraint showing **by far the strongest impact** on the parameter space of the MSSM is the **relic density**"

Roszkowski et al.'14

...as a þin:

When a dark matter signal is (finally) found: relic abundance can pin-point the particle physics interpretation

THERMAL RELIC DENSITY STANDARD APPROACH

time evolution of $f_{\chi}(p)$ in kinetic theory:

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) \boldsymbol{f_{\chi}} = \mathcal{C}[\boldsymbol{f_{\chi}}]$$

Liouville operator in FRW background

the collision term

THERMAL RELIC DENSITY STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$: *assumptions for using Boltzmann eq: $E\left(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}\right)f_{\chi} = \mathcal{C}[f_{\chi}]$ classical limit, molecular chaos,... ... for derivation from thermal OFT see e.g., 1409.3049 integrate over p (i.e. take 0th moment) $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel} \rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq} \right)$ where the thermally averaged cross section: 0.01 $\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3\vec{p}_{\chi}}{(2\pi)^3} \frac{d^3\vec{p}_{\bar{\chi}}}{(2\pi)^3} \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$ 0.001 0 0001 10-1 increasing $\langle \sigma v \rangle$ 10 Der sity 10 101 10.1 DOT 19-16 Num 10 11 10-18 2 10 H **Critical assumption:** kinetic equilibrium at chemical decoupling Com 10 10-16 10-15 $f_{\chi} \sim a(\mu) f_{\chi}^{\rm eq}$ 10-18 n10-10 10-16 10.0 s=m/T time \rightarrow Fig.: Jungman, Kamionkowski & Griest, PR'96

FREEZE-OUT VS. DECOUPLING

Boltzmann suppression of DM vs. SM

 \Rightarrow

scatterings typically more frequent

dark matter frozen-out but typically still kinetically coupled to the plasma Schmid, Schwarz, Widern '99; Green, Hofmann, Schwarz '05

DM

SM

EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation i.e. rates around freeze-out: $H \sim \Gamma_{ann} \gtrsim \Gamma_{el}$

B) Boltzmann suppression of SM as strong as for DM e.g., below threshold annihilation (forbidden-like DM)

C) Scatterings and annihilation have different structure

e.g., semi-annihilation, 3 to 2 models,...

How to describe KD?

All information is in full BE:

both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

ONE STEP FURTHER...

Now consider general KD scenario, i.e. coupled temperature and number density evolution:

<u>These equations still assume the equilibrium shape of $f_{\chi}(p)$ — but with variant temperature</u>

or more accurately: that the thermal averages computed with true nonequilibrium distributions don't differ much from the above ones

NUMERICAL APPROACH

... or one can just solve full phase space Boltzmann eq.

Example A: Scalar Singlet DM

SCALAR SINGLET DM VERY SHORT INTRODUCTION

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

$$\mathcal{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} \mu_{S}^{2} S^{2} - \frac{1}{2} \lambda_{s} S^{2} |H|^{2} \qquad \qquad m_{s} = \sqrt{\mu_{S}^{2} + \frac{1}{2} \lambda_{s} v_{0}^{2}}$$

Most of the parameter space excluded, but... even such a simple model is hard to kill

SCALAR SINGLET DM ANNIHILATION VS. SCATTERINGS

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

Freeze-out at few GeV \rightarrow what is the <u>abundance of heavy quarks</u> in QCD plasma? QCD = A - all quarks are free and present in the plasma down to T_c = 154 MeV two scenarios: QCD = B - only light quarks contribute to scattering and only down to 4T_c 13

Results Effect

Why such non-trivial shape of the effect of early kinetic decoupling?

we'll inspect the y and Y evolution...

FULL PHASE-SPACE EVOLUTION

significant deviation from equilibrium shape already around freeze-out

→ effect on relic density largest, both from different T and f_{DM}

large deviations only at later times, around freeze-out not far from eq. shape effect on relic density ~only from different T

GENERIC RESONANT ANNIHILATION Example effect on early KD on relic density

Example B: Forbidden DM

B) Boltzmann suppression of SM as strong as for DM

FORBIDDEN DARK MATTER

decoupling close

 ψ

 $\overline{\psi}$

FORBIDDEN DARK MATTER Example effect on early KD on relic density

EXAMPLE C: SEMI-ANNIHILATION

C) Scatterings and annihilation have different structure

DARK MATTER SEMI-ANNIHILATION AND ITS SIMPLEST REALIZATION

DM is a thermal relic but with freeze-out governed by the semi-annihilation process

D'Eramo, Thaler '10; ...

Z₃ complex scalar singlet: $V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 |S|^2 + \lambda_S |S|^4 + \lambda_{SH} |S|^2 |H|^2 + \frac{\mu_3}{2} (S^3 + S^{\dagger 3}).$

just above the Higgs threshold semi-annihilation dominant! Belanger, Kannike, Pukhov, Raidal '13

SEMI-ANNIHILATION Example effect on early KD on relic density

<u>Note</u>: here the final effect is relatively mild (though still larger than the observational error), but only because in the simplest model the velocity dependence of annihilation is mild as well...

CONCLUSIONS

I. One needs to remember that kinetic equilibrium is a <u>necessary</u> assumption for <u>standard</u> relic density calculations

2. Coupled system of Boltzmann equations for 0th and 2nd moments allow for a <u>very accurate</u> treatment of the kinetic decoupling and its effect on relic density

3. In special cases the full phase space Boltzmann equation can be necessary — especially if one wants to <u>trace DM</u> <u>temperature</u> as well

...a step towards more fundamental and reliable relic density determination