

Dark Matter and the H_0 tension

Andrzej Hryczuk

based on:

AH, K. Jodłowski 2006.16139

Zjazd Fizyków Polskich 2021

23rd September 2021

PREFACE: H_0 TENSION (CA. SEP. 2021)

64

ΛCDM problems

"Early vs. late":

I. H₀ tension

~4 to 6σ (depending on datasets combination and stat. method)

II. $S_8 - \Omega_m$

strengthened a bit by DES results from May 2021 Secco et al, 2105.13544

but by itself only ~2.3 σ

III. BAO z<1 vs. Ly- α

(recently shrunk to below $2\sigma...$)

Small scale:

I. Diversity

in ΛCDM essentially one parameter specifying a halo, while reality much more diverse

II. Too-big-to-fail

most massive sub-haloes are expected to host luminous counterparts, but seem not to

III. Core-cusp

simulations predict more cuspy profiles than typically observed

IV. Missing satellites

simulations predict more more sub-haloes and hence we'd expect more MW satellites

WHAT IS THE ROLE FOR DM?

Small scale:

going beyond the collisionless CDM (e.g. having warm component or including self-interactions) can address (at least some of the) cosmological problems

quite rich literature on the subject...

...generically velocity-dependent self-interactions are preferred see e.g. review by Tulin, Yu '17

DM self-interactions due to exchange of a light mediator

"Early vs. late":

in ΛCDM the DM component is extremely simple

non-interacting, cold, with constant equation of state throughout whole evolution

however, if at late times a fraction of its energy is transferred to radiation (e.g. through decay or annihilation), then this can significantly affect the evolution

... but can it address both at the same time?!

$DM \; \text{and the} \; H_0$

Simply modifying the amount of matter in Λ CDM changes H₀

...but in an orthogonal direction to what is needed to also lower the sound horizon at the drag epoch by ~7%

$$f_{DCDM} \sim 0.08$$
 $H_0 \sim 69$ km/s/Mpc

However, if DM evolution changes after recombination

...the Λ CDM fit is unaltered, while as matter is depleted into radiation the matter-dark energy equality is shifted to earlier redshifts, allowing for higher value of H₀ at late times.

E.g., fraction of DM decaying to radiation:

see also:

Poulin, Lesgourges, Serpico '16, Haridasu, Viel '20, Clerk et al. '20,...

JULY 2021: THE OLYMPICS

Schoneberg et al. 2107.10291

However, the DM solution (on its own) is not among the preferred ones:

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	ΔAIC		Finalist
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.9σ	X	-4.60	-2.60	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.6σ	X	-3.77	-1.77	X	X
DR-DM	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-7.82	-3.82	X	X
mixed DR	2	-19.388 ± 0.026	3.2σ	3.7σ	X	-6.40	-2.40	X	X
$SI\nu + DR$	3	-19.440 ± 0.038	3.7σ	3.9σ	X	-3.56	2.44	X	X
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	√ ②
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ 🧐
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ 🧐
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	\checkmark \bigcirc
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	√ ②
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	\checkmark	-17.70	-11.70	\checkmark	√ ②
CPL	2	-19.400 ± 0.016	3.9σ	4.1σ	X	-4.23	-0.23	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.0σ	\checkmark	4.76	4.76	X	X
MPEDE	1	-19.400 ± 0.022	3.6σ	4.0σ	X	-2.21	-0.21	X	X
$\rm DM \rightarrow \rm DR + \rm WDM$	2	-19.410 ± 0.013	4.2σ	4.4σ	X	-4.18	-0.18	X	X
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.2σ	X	0.11	4.11	X	X

[Although, to be fair, it seems like none of the proposed ideas does the job well...]

SOME MORE ISSUES...

THE IDEA

both give viable, though not that unexpected mechanisms for self-interacting DM production, but superWIMP has an **intriguing feature**...

THE IDEA

WIMP-like connector state

 $\Gamma_{S \to \chi \chi} \propto \epsilon^2$

therefore, parametrically:

$$BR(S \to AA) \propto g^4$$
$$BR(S \to \chi \chi A) \propto g^2$$

 $\sim (1 - 10)\%$

(with different phase space factors and energy of the mediator)

if
$$\delta = 1 - \frac{2m_{\chi}}{m_S} \ll 1 \implies$$

S decays mostly to matter χ with small fraction to radiation A

Property needed to modify expansion rate here present in an automatic way!

EXAMPLE MODEL

SM and dark sector connected through a very weak Higgs portal:

Assume WIMP-like symmetry

 $Z_2: S \to -S$

that is broken* (explicitly or spontaneously) with breaking parametrized by ϵ

Relevant interaction terms:

* at some high scale, e.g GUT or even Planck scale

HISTORY

[The model can be viewed also as an extension of the usual Higgs portal DM to weaker couplings]

In this regime DM is produced from out of equilibrium decay and never thermalizes

more extended parameter space giving large self-interactions than in thermal models

> the mediator is not in the plasma and therefore can be absolutely stable

DCDM MODEL

It has been noted that the Decaying DM model (DCDM) with two parameters:

 Γ — decay width F — fraction of the decaying component

can improve the fit to the Hubble parameter over the CDM

...; S. Aoyama et al. '14; V. Poulin, P. Serpico, J. Lesgourgues '16; K. Enqvist et al. '15; G. Blackadder, S. Koushiappas '18; Y. Gu et al. '20; ...

We have performed our fit with MontePython using combined datasets:

- Planck 2018
- BAO data from the BOSS survey
- the galaxy cluster counts from Planck catalogue
- local measurement of the Hubble constant.

with two different life-time priors: short and long (motivated by previous results) K.Vattis, S. Koushiappas, A. Loeb '19

DCDM MODEL

The H₀ parameter best fit:

Two preferred lifetime regimes:

- short (regime B): $\tau \sim 4$ Myr while fraction of dark radiation is strongly constrained to be below ~ 1%
- long (regime C): $T \sim 5$ Gyr while fraction of dark radiation is allowed to be as big as ~ 10%.

The shift of the H_0 compared to ΛCDM is however rather mild in models of the type as our example

... although this could perhaps be modified with model building, complete solution of the H_0 tension is unlikely see also S. Clark et al. '20

but DCDM can play its part in the full solution

REGIME B: SIDM FROM LATE DECAYS

In this regime life-time on cosmological scales changing the expansion rate - chance to impact the H₀ tension

best fit spans over wide region of mediator mass $\leq 1 \text{MeV}$ but pretty specific m_{χ}

though the change of the H₀ parameter is not large enough to completely solve the tension

Does this model <u>solve</u> the H_0 tension?

...but:

I.

II.

There is a growing consensus that a mix of pre- and post-recombination effects are needed to completely solve the tension (unless systematics is to blame...)

> might be a part of the solution!

REGIME C: ULTRA-SIDM

 H_0 or help with SMBHs formation rate, but not both

BONUS: XENON 1T

Throughout the whole discussion we assumed the mediator is completely stable...

... but it does not need to be

G.Alonso-Alvarez et al. '20

I. Mechanism of self-interacting DM production from decays of an intermediate state offers a new way of constructing models satisfying the known constraints

2. It provides a natural way of transferring few % of energy density to radiation at late times allowing for slightly alleviating the H_0 tension

[or from a different angle: can be a part of the solution as it's quite likely that true explanation is a combination of few effects]

3. Extensions of the simple model discussed here can offer interesting phenomenology and are worth investigating

4. More data coming: a 5yr observing run by the upgraded LIGO, Virgo, KAGRA and LIGO India detectors should be enough to measure H₀ to 1% by 2030