Dark Matter freeze-out and freeze-in Beyond Kinetic Equilibrium

Andrzej Hryczuk

based on:

A.H. & M. Laletin 2204.07078

A.H. & M. Laletin 2104.05684

and T. Binder, T. Bringmann, M. Gustafsson & A.H. 1706.07433, 2103.01944

IN CASE YOU'RE NOT INTERESTED IN WHAT FOLLOWS...

THERMAL RELIC DENSITY STANDARD SCENARIO

time evolution of $f_{\chi}(p)$ in kinetic theory:

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$

Liouville operator in FRW background

the collision term

THERMAL RELIC DENSITY STANDARD APPROACH

Boltzmann equation for $f_{\chi}(p)$:

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$

integrate over *p* (i.e. take 0th moment)

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...

...for derivation from thermal QFT see e.g., 1409.3049

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel}\rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq}\right)$$

where the thermally averaged cross section:

$$\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3 \vec{p}_{\chi}}{(2\pi)^3} \frac{d^3 \vec{p}_{\bar{\chi}}}{(2\pi)^3} \ \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \ f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$$

1

Critical assumption:

kinetic equilibrium at chemical decoupling

$$f_{\chi} \sim a(T) f_{\chi}^{\text{eq}}$$

FREEZE-OUT VS. DECOUPLING

annihilation

(elastic) scattering

$$\sum_{\text{spins}} \left| \mathcal{M}^{\text{pair}} \right|^2 = F(p_1, p_2, p_1', p_2')$$

$$\sum_{\text{spins}} \left| \mathcal{M}^{\text{scatt}} \right|^2 = F(k, -k', p', -p)$$

Boltzmann suppression of DM vs. SM

scatterings typically more frequent

dark matter frozen-out but typically still kinetically coupled to the plasma

Schmid, Schwarz, Widern '99; Green, Hofmann, Schwarz '05

EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation

i.e. rates around freeze-out: $H \sim \Gamma_{
m ann} \gtrsim \Gamma_{
m el}$

Possibilities:

B) Boltzmann suppression of SM as strong as for DM

e.g., below threshold annihilation (forbidden-like DM)

C) Scatterings and annihilation have different structure

e.g., semi-annihilation, 3 to 2 models,...

D) Multi-component dark sectors

HOW TO GO BEYOND KINETIC EQUILIBRIUM?

All information is in the full BE:

both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$
 contains both scatterings and annihilations

NEW TOOL!

GOING BEYOND THE STANDARD APPROACH

- Home
- Downloads
- Contact

Dark matter Relic Abundance beyond Kinetic Equilibrium

Authors: Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk

DRAKE is a numerical precision tool for predicting the dark matter relic abundance also in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. The code comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution. The code is written in Wolfram Language and includes a Mathematica notebook example program, a template script for terminal usage with the free Wolfram Engine, as well as several concrete example models.

DRAKE is a free software licensed under GPL3.

If you use DRAKE for your scientific publications, please cite

DRAKE: Dark matter Relic Abundance beyond Kinetic Equilibrium,
 Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk, [arXiv:2103.01944]

Currently, an user guide can be found in the Appendix A of this reference. Please cite also quoted other works applying for specific cases.

v1.0 « Click here to download DRAKE

(March 3, 2021)

https://drake.hepforge.org

Applications:

DM relic density for any (user defined) model*

Interplay between chemical and kinetic decoupling

Prediction for the DM phase space distribution

Late kinetic decoupling and impact on cosmology

see e.g., 1202.5456

. . .

(only) prerequisite: Wolfram Language (or Mathematica)

*at the moment for a single DM species and w/o co-annihlations... but stay tuned for extensions!

EXAMPLE D:

When additional influx of DM arrives

D) Multi-component dark sectors

Sudden injection of more DM particles distorts $f_{\chi}(p)$ (e.g. from a decay or annihilation of other states)

- this can modify the annihilation rate (if still active)
- how does the thermalization due to elastic scatterings happen?

EXAMPLE EVOLUTION

2) DM annihilation has a threshold e.g. $\chi \bar{\chi} \to f \bar{f}$ with $m_{\chi} \lesssim m_f$

FREEZE-IN:

C) with semi-annihilation process

HOW ABOUT SEMI-PRODUCTION?

AH, Laletin 2104.05684 (see also Bringmann et al. 2103.16572)

Consider process of production that is the inverse of semi-annihilation:

What is different (from the decay/pair-annihilation freeze-in)?

- The production rate is proportional to the DM density.
 (Smaller initial abundance → larger cross section...)
- Semi-production modifies the energy of DM particles in a non-trivial way, so the temperature evolution can affect the relic density

EVOLUTION

The full calculation compared to one assuming $T_{\chi} = T$ can differ by more than order of magnitude!

INDIRECT DETECTION

- The results of the scan in the parameter space for the DM production dominated by the semi-annihilation processes.
- The coloured squares indicate the points, which are within the reach of the future searches for the mediator ϕ and the empty ones are beyond these prospects.
- The points above the grey dotdashed line can potentially explain the core formation in dSph [1803.09762]

SUMMARY

- I. Kinetic equilibrium is a <u>necessary</u> (often implicit) assumption for <u>standard</u> relic density calculations in all the numerical tools... ...while it is not always warranted!
- **2**. Much more <u>accurate</u> treatment comes from solving the full phase space Boltzmann equation (fBE) to obtain result for $f_{\rm DM}(p)$ where one can study also self-thermalization from self-scatterings
- 3. Introduced **DRAKE**: a <u>new tool</u> to extend the current capabilities to the regimes beyond kinetic equilibrium
- 4. Multi-component sectors, when studied at the fBE level, can reveal quite unexpected behavior