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FIG. 5. The rotation curves of the 25 galaxies published by Albert Bosma in 1978 [60].

for ten high-luminosity spiral galaxies and found that they were flat out to the outermost

measured radius [268]. This work has become one of the most well-known and widely cited

in the literature, despite the fact that the optical measurements did not extend to radii as

large as those probed by radio observations, thus leaving open the possibility that galaxies

may not have dark matter halos, as pointed out, for example, by Agris J. Kalnajs in 1983

(see the discussion at the end of Ref. [150]) and by Stephen Kent in 1986 [175]. Rubin, Ford

and Thonnard themselves acknowledged the credit that was due to the preceding analyses:

Roberts and his collaborators deserve credit for first calling attention to flat

rotation curves. [...] These results take on added importance in conjunction with

the suggestion of Einasto, Kaasik, and Saar (1974) and Ostriker, Peebles and

Yahil (1974) that galaxies contain massive halos extending to large r.

Suggested read: Bertone & Hooper ’16

Idea that there is some „dark matter” in the 
Universe has a very long history

But for the most part the „dark” has been 
understood as a mere adjective… 

A. Bosma ’78

What made it to the transition 
to a proper noun?

Indeed, even the historical milestone of 
establishing that the rotation curves of 

galaxies are close to flat at large 
distances, did not cement the idea that 

there is a „new kind of matter”
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Rotation curves are commonly seen as the 
most direct evidence of the existence of DM

… but this frames DM as an astrophysical „issue” 
(cf. phrase like „missing mass problem”)

From HEP or cosmology perspective the most important pieces of evidence:

CMB anisotropies BBN 
(and missing baryons)

Matter power 
spectrum
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And then there is also of course:

The Bullet Cluster

mass 
distribution 
from lensing

hot gas from X-ray observations



There is plenty of evidence on astrophysical and 
cosmological length scales that DM exists…

… but no direct evidence that it is a particle DM

Qualitatively 
convergent 

picture!
)

DARK MATTER
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Modification of gravity MACHOs
(leading to a MOND limit)

F = ma ⋅ μ(a/a0)

μ(x) = {x, if 0 < x ≪ 1
1, if x ≫ 1

a0 ≈
cH0

2π

new (fundamental) constant

e.g.     TeVeS                     RMOND
Bekenstein ’04 Skordis, Złośnik ’21

2

~r · [(dJ /dY)~r'] = 4⇡Ĝ⇢ while �̂ obeys the Poisson equa-
tion ~r2�̂ = 4⇡Ĝ⇢. Emergence of MOND is then ensured if
J ! 2�s

3(1+�s)a0
Y3/2 as ~r' ! 0. It is in this limit that a0

appears.
For a point source of mass M , the MOND-to-Newton tran-

sition occurs at rM ⇠
p

(GNM/a0). A MOND force
⇠

p
GNMa0/r lends its way trivially to a Newtonian force

GNM/r
2 as r ⌧ rM but in the inner Solar System this is

not sufficient. Corrections to r
�2 due to ' will compete with

the post-Newtonian force ⇠ (GNM)2/r3, and these are con-
strained at Mercury’s orbit to less than ⇠ 10�4 [83, 84]. Sup-
pressing these may happen either through screening or track-
ing. In the former, ' is screened at large ~r' so that � ⇡ �̂
while in the latter ' ! �̂/�s, so that GN = (1+1/�s)Ĝ. We
model both with �s since screening is equivalent to �s ! 1.
In terms of J , tracking happens if J ! �sY , while screening
occurs if J has terms Yp with p � 3/2 (this may be in conflict
with Mercury’s orbit even as p ! 1) or via higher-derivative
terms absent from (2).

Consider requirement (iii), that is, successful cosmology.
In (2) we have a new d.o.f. '(~x) and we expect that the same
will appear in cosmology, albeit with a time dependence, i.e.
�̄(t). Consider a flat FLRW metric so that g00 = �N

2 and
gij = a

2
�ij where N(t) is the lapse function and a(t) the

scale factor. What should the expectation for a cosmological
evolution of �̄(t) be? The MOND law for galaxies is silent re-
garding this matter. There is, however, another empirical law
which concerns cosmology: the existence of sizable amounts
of energy density scaling precisely as a

�3. Within the DM
paradigm such a law is a natural consequence of particles
obeying the collisionless Boltzmann equation. The validity
of this law has been tested [85, 86] and during the time be-
tween radiation-matter equality and recombination it is valid
within an accuracy of ⇠ 10�3. Do scalar field models leading
to energy density scaling as ⇢̄ ⇠ a

�3 exist?
The answer is yes: shift symmetric k essence. It has been

shown [87] that a scalar field with Lagrangian ⇠ K(X̄ ) where
X̄ = ˙̄

�
2
/N

2, leads to dust (i.e. ⇢̄ ⇠ a
�3) plus cosmologi-

cal constant (CC) solutions provided K(X̄ ) has a minimum at
X̄ = X0 6= 0. Such a model is the low energy limit of ghost
condensation [88, 89] although the latter also contains higher
derivative terms ⇠ (⇤�)2 in its action. The FLRW action is

S =
1

8⇡G̃

Z
d
4
xNa

3


�3H2

N2
+ K(Q̄)

�
+ Sm[g] (3)

where Q̄ = ˙̄
�/N and H = ȧ/a. Interestingly, (2) and (3) are

shift symmetric in ' and �̄ respectively.
We propose that the MOND analog on FLRW is given by

(3) with

K = �2⇤ + K2(Q̄ � Q0)
2 + . . . (4)

where ⇤ is the CC, K2 and Q0 parameters and (. . .) denote
higher powers in this expansion. Expanding in Q � Q0 rather
than X � X0 is the most general expansion leading to dust

solutions and includes the K(X̄ ) case. The CC in this model
remains a freely specifiable parameter, just as in the ⇤-cold
dark matter (⇤CDM) model. Following [88, 89], we call this
the (gravitational) Higgs phase.

Requirement (iv), that is, correct gravitational lensing with-
out DM, requires a relativistic theory. A minimal theory for
RMOND is a scalar-tensor theory[23] with the scalar pro-
viding for a conformal factor between two metrics. How-
ever, since null geodesics are unaltered by conformal transfor-
mations, such theories cannot produce enough lensing from
baryons in the MOND regime. Sanders solved the lensing
problem by changing the conformal into a disformal trans-
formation [53] using a unit-timelike vector field, incorporated
by Bekenstein [54] into TeVeS. The unit-timelike vector has
component A0 ⇠

p
�g00 and this ensures that the two metric

potentials are equal (as in GR), so that solutions which mimic
DM also produce the correct light deflection.

Meanwhile the anisotropic scaling of the MOND law ⇠
|~r'|3 compared with a well-behaved cosmology implying
terms like ˙̄

�
2 and ˙̄

�
4, heuristically implies (gravitational)

Lorentz violation. A good way of introducing such an ingre-
dient is via a unit-timelike vector field Aµ, much like the spirit
of the Einstein-Æther theory [90, 91], and TeVeS [53, 54].

The advanced Laser Interferometer Gravitational Observa-
tory (LIGO) and Virgo interferometers [92] observed GWs
from a binary neutron star merger. Combined with electro-
magnetic observations [93, 94], this strongly constrains the
GW tensor mode speed to be effectively equal to that of
light. By analyzing the tensor mode speed, TeVeS has been
shown [95–98] to be incompatible with the LIGO-Virgo ob-
servations for any choice of parameters. The necessary d.o.f.
� and Aµ are also ingredients of TeVeS, only there, a sec-
ond metric was introduced as a combination of gµ⌫ , � and
Aµ. In [99], � and Aµ were combined into a timelike (but not
unit) vector Bµ, and it was shown that TeVeS may be equiva-
lently formulated with a single metric gµ⌫ minimally coupled
to matter, and Bµ with a noncanonical and rather complicated
kinetic term. A general class of theories based on the pair
{gµ⌫ , Bµ} was uncovered [98] where the tensor mode speed
equals the speed of light in all situations, satisfying require-
ment (v).

The new theory. – A subset of the general class [98]
depends on a scalar � and unit-timelike vector A

µ such
that [100]

S =

Z
d
4
x

p
�g

16⇡G̃


R � KB

2
F

µ⌫
Fµ⌫ + 2(2 � KB)Jµrµ�

� (2 � KB)Y � F(Y,Q) � �(Aµ
Aµ + 1)

�
+ Sm[g]

(5)

where Fµ⌫ = 2r[µA⌫], Jµ = A
↵r↵Aµ, and the Lagrange

multiplier � imposes the unit-timelike constraint on Aµ. In
addition F(Y,Q) is a free function of Q = A

µrµ� and Y =
q
µ⌫rµ�r⌫� where qµ⌫ = gµ⌫ + AµA⌫ is the three-metric

orthogonal to A
µ. Notice that (5) is shift symmetric under

(problem with 
cosmology and GWs)

(Massive Compact Halo Objects)

They do exist, but number strongly 
constrained by lensing & most of them 

cannot be baryonic if to play the role of DM

what about Primordial Black Holes?

CDM compatible with (close to) scale invariant 
power spectrum: if extrapolated to small scales 

PBHs formation negligible

Λ

Garcia-Bellido ’17



Nature, volume 562, pages 51–56 (2018)

(…) the new guiding principle 
should be “no stone left 
unturned”. 

From HEP perspective it all 
may feel quite depressing…

DARK MATTER CRISIS?
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DARK MATTER CRISIS?

BELIEFS OF XXI CENT.

„DM is nearly certainly WIMPs 
(or perhaps axions or sterile ’s)”ν

„SUSY is just around the corner”

)       Studying BSM models 
and their phenomenology in 
direct & indirect detection 

makes a lot of sense

Realisation that we actually 
have no idea what DM is 

starts to sink in

Options:

New detection 
ideas

Double down 
and propose/

study new 
models

Make an effort 
to improve our 
understanding 

of relevant 
processes
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Dark Matter 
production

Freeze-out

Freeze-in

Asymmetric

Phase 
transitions, 

Misalignment, 
…

DARK MATTER ORIGIN

co-
annihilation

semi-
annihilation

co-
scattering

assisted
…

superWIMP

UV

IR

semi-
production

’forbidden'

Pre radiation 
domination

 reheating

inflaton 
decay

 gravitational

w/ freeze-
out

co-genesis
asymm. 

freeze-in



THERMAL RELIC DENSITY  
A.K.A. FREEZE-OUT

freeze-out 

DM in full 
equilibrium

chemical 
decoupling

tim
e

Γann < H

Γann ∼ H

Γann > H

T
SM

DM

This p
rocess 

is (
esse

ntia
lly

) alw
ays p

resent!

[O
nly ex

cep
tio

ns: D
M is 

not a partic
le o

r co
upled

 ex
tre

mely
 weakly to

 

SM or re
heatin

g T is 
sm

aller
 th

an DM m
ass]
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time evolution of         in kinetic theory: 

freeze-out 

DM in full equilibrium

chemical decoupling
timeT

no
n-

eq
uil

ibr
ium

f�(p)

E (@t �H~p ·r~p) f� = C[f�]
the collision termLiouville operator in 

FRW background

kinetic decouplingΓscatt ∼ H
Γann < H

Γann ∼ H

Γann > H
(chemical and kinetic)

THERMAL RELIC DENSITY  
STANDARD SCENARIO



*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

Critical assumption: 
kinetic equilibrium at chemical decoupling

E (@t �H~p ·r~p) f� = C[f�])

Boltzmann equation for        :

integrate over p 
(i.e. take 0th moment)

f�(p)

)

fχ ∼ a(T ) f eq
χ

for a process of DM DM  SM SM↔

THERMAL RELIC DENSITY  
STANDARD APPROACH



1 DM particle

elastic scattering

DM

SM’

DM

SM

self scattering

DM DM

DM DM

2 DM particles

# changing processes  number density⇒

# conserving processes  energy density⇒

3 DM particles 4+ DM particles

…

DM

DM

SM

SM’

annihilation

DM

DM

DM

SM

semi-annihilation

DM

DM

DM

DM

DM

DM

DM

DM

DM

SM

cannibalization

…

For now assume a minimal theory of SM + one DM field

stability

DM
SM

SM’

DM

SMSM’

SM’’

WHAT GOES INTO C IN GENERAL?
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SUSY

χ = α1B̃+α2W̃+α3H̃1+α4H̃2

Neutralino 

SU(2):   singlet    triplet   doublet ⇒ has SM gauge interactions 
with fixed strength… but 

unknown mixing

χ
W

Wχ
+ …

χ
f

f̄χ
f̃

in particular:

mχ ∼ 𝒪(100 − few 1000) GeV

Simple WIMP (e.g. scalar singlet model)

h�vreli2 ⌘
g
2
�

3Tm�n
2
�

Z
d
3
p

(2⇡)3

Z
d
3
p̃

(2⇡)3
p
2
vrel��̄�!X̄Xf(E)f(Ẽ) (1)

where the equilibrium number density in the nonrelativistic regime is n
eq
� = m

3
�g�K2(x)/(2⇡

2
x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the

Boltzmann equation can be written as:

y
0

y
= �Y

0

Y

✓
1� h�vreli2

h�vreli

◆
�
✓
1� x

3

g
0
⇤S
g⇤S

◆
2m�c(T )

Hx

✓
1� yeq

y

◆
, (2)

with

c(T ) =
1

12(2⇡)3m4
�T

X

X

Z
dk k

5
!
�1

g
± �

1⌥ g
±�
Z 0

�4k2

(�t)
1

8k4
|Mel|2 . (3)

To summarize we get coupled equations:

Y
0

Y
= �

1� x
3
g0
⇤S

g⇤S

Hx
sY

 
h�vreli|x=m2

�/(s
2/3y) �

Y
2
eq

Y 2
h�vreli|x

!
(4)

y
0

y
= �

1� x
3
g0
⇤S

g⇤S

Hx

"
2m�c(T )

✓
1� yeq

y

◆
(5)

�sY

 ⇣
h�vreli � h�vreli2

⌘

x=m2
�/(s

2/3y)
�

Y
2
eq

Y 2

⇣
h�vreli � h�vreli2

⌘

x

!#
.

The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,

LS =
1

2
@µS@

µ
S � 1

2
µ
2
SS

2 � 1

2
�sS

2|H|2 . (6)

After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving

ms =

r
µ
2
S +

1

2
�sv

2
0 , (7)

where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.

�vrel =
2�

2
sv

2
0p

s
|Dh(s)|2�h(

p
s) , (8)

where

|Dh(s)|2 ⌘ 1

(s�m
2
h)

2 +m
2
h�

2
h(mh)

. (9)

• For ms < mh/2, the width in the propagator Dh(s) must be increased by the invisible contribution �inv

due to h ! SS:

�inv =
�
2
sv

2
0

32⇡mh

�
1� 4m

2
s/m

2
h

�1/2
, (10)

• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign

w.r.t. [?], as pointed out by P. Gondolo):

vrel�hh =
�
2
s

16⇡s2vs


(a

2
R + a

2
I)svsvh

� 4�sv
2
0

✓
aR � �sv

2
0

s� 2m
2
h

◆
log

����
m

2
s � t+

m2
s � t�

����

+
2�

2
sv

4
0svsvh

(m2
s � t�)(m2

s � t+)

�
, (11)

where vi =
p
1� 4m

2
i /s, t± = m

2
s +m

2
h � 1

2s(1⌥ vsvh), and

aR ⌘ 1 + 3m
2
h(s�m

2
h)|Dh(s)|2

aI ⌘ 3m
2
h

p
s�h(mh)|Dh(s)|2. (12)

1

one coupling governing 
production & detection

S

S

SM

SM’

S

S

h

h

h
+ + …

… but still not ruled out
mS ∼ ( ∼ 55 − 63) GeV & > 3 TeV
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Semi-annihilation
D’Eramo, Thaler ’10

Typically occurs when new „flavour” or „baryon” structure in dark 
sector, but also present in scalar models, e.g. with  symmetryℤ3

DM

DM

DM

SM

These developments are especially relevant precisely in the regions that are still allowed

by the experimental data and where the improved precision of theoretical predictions is

required for robust claims of exclusion of the whole parameter space of the thermal Z3

singlet dark matter model.

The aim of this paper is to provide a timely update of the past results [53]. While the

unitarity constraints are often computed in the limit of infinite energy, we calculate them

at finite energy with the help of the latest version [78] of the SARAH package [80–83].

We use the one-loop e↵ective potential to calculate the bounds of absolute stability and

metastability of the EW minimum from the tunnelling rate with the help of the AnyBubble

package [84].1 These constraints, in particular the one from the unitarity, put an upper

bound on the singlet cubic self-coupling and therefore on the semi-annihilation cross section.

We take into account early kinetic decoupling around the Higgs resonance and for large

semi-annihilation, and use the micrOMEGAs code [86] to calculate relic density in the

larger part of the parameter space. The micrOMEGAs is also used to compute predictions

for direct and indirect detection signals. A large part of the parameter space is already

ruled out by XENON1T [47]. Thanks to the new unitarity constraints, we manage to

further restrict the model.

We introduce the model in section 2. Various theoretical and experimental constraints

are considered in section 3. Dark matter freeze-out, the impact of early kinetic decoupling

and semi-annihilation are studied in section 4. Section 5 discusses prospects of direct and

indirect detection of dark matter. We conclude in section 6. Details of the field-dependent

masses and counter-terms for the e↵ective potential are given in the appendix A.

2 The model

The most general renormalisable scalar potential of the Higgs doublet H and the complex

singlet S, invariant under the Z3 transformation H ! H, S ! e
i2⇡/3

S, is given by

V = µ
2

H |H|2 + �H |H|4 + µ
2

S |S|2 + �S |S|4 + �SH |S|2 |H|2 + µ3

2
(S3 + S

†3). (2.1)

This is the only possible potential with this field content and symmetry. Without loss of

generality, we can take µ3 real and non-negative.

The mass of the Higgs boson is Mh = 125.09 GeV [87] and the Higgs vacuum expec-

tation value (VEV) v = 246.22 GeV. We fix the parameters

µ
2

H = �
M

2

h

2
,

�H =
1

2

M
2

h

v2
,

µ
2

S = M
2

S � �SH

v
2

2
.

(2.2)

Dark matter mass MS , the Higgs portal �SH , the singlet cubic coupling µ3 and the singlet

quartic self-coupling �S are left as free parameters.

1
The first-order phase transition from thermal tunnelling into the EW minimum can produce a measur-

able gravitational wave signal, but only in a parameter space region with DM underdensity [85].

– 3 –

This interaction does not directly give a direct detection signal 
and leads to self-heating of DM

Kamada et al. ’18

Cai, Spray ’18 

implications for
core 

formation
ID

Chu, Garcia-Cely ’18 

Cannibal DM
Calrson, Machacek, Hall ’92

DM

DM

DM

DM

DM

…

Idea: completely secluded dark sector, no non-gravitational interactions)
Freeze-out still possible and natural for mDM ∼ 𝒪(10 − 100) MeV

Hochberg et al. ’14; … 

This process also heats up DM, making original proposal incompatible with structure formation…
but revived after including additional (very weak) interactions with SM as „the SIMP miracle” 
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Dark freeze-out

If in the dark sector a light state with  is present  a completely secluded  freeze-out is possibleμ = 0 ⇒ 2 ↔ 2

Differences:
- dark sector can have different temperature 
- Hubble rate & d.o.f. need to be modified
- no direct connections to indirect nor direct detection

T′ 

see e.g. Bringmann et al. ’21

Inverse decays - INDY DM
Frumkin et al. ’21

Thermal Dark Matter from Freezeout of Inverse Decays

Ronny Frumkin1,⇤ Yonit Hochberg1,† Eric Kuflik1,‡ and Hitoshi Murayama2,3,4,5§
1Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

2Ernest Orlando Lawrence Berkeley National Laboratory,
University of California, Berkeley, CA 94720, USA

3Department of Physics, University of California, Berkeley, CA 94720, USA
4Kavli Institute for the Physics and Mathematics of the Universe (WPI),

University of Tokyo, Kashiwa 277-8583, Japan and
5The Institute for AI and Beyond, The University of Tokyo, Tokyo 113-8655, Japan

We propose a new thermal dark matter candidate whose abundance is determined by the freezeout
of inverse decays. The relic abundance depends parametrically only on a decay width, while matching
the observed value requires that the coupling determining the width—and the width itself—should
be exponentially small. The dark matter is therefore very weakly coupled to the Standard Model,
evading conventional searches. This INverse DecaY (‘INDY’) dark matter can be discovered by
searching for the long-lived particle that decays into the dark matter at future planned experiments.

INTRODUCTION

The identity of dark matter (DM) is one of the
most pressing open questions in modern day physics.
While the weakly interacting massive particle (WIMP)
paradigm has long guided the particle physics commu-
nity, the absence of experimental evidence for the WIMP
at colliders, direct-detection and indirect-detection ex-
periments stresses the importance of considering DM be-
yond the WIMP. Indeed, recent years have seen a surge
of new DM ideas (see e.g. Refs. [1–15]) which utilize
various processes in the early universe.

One such process is inverse decay, where a DM par-
ticle is produced through the inverse decay of a heavier
particle in the dark sector. Thus far, decays have been
considered in the literature in the context of freeze-in
DM [16], where a slow inverse decay of a bath particle
slowly freezes in the DM abundance; as a process main-
taining chemical equilibrium within the dark sector or
with the SM [7, 8, 13, 17–22]; and in other dark matter
frameworks [16–18, 23–26]. The e↵ects of inverse decays
on dark matter depletion have been considered as a con-
tributing reaction [27, 28], but never as the main process
for setting the dark matter abundance. In this work, and
in a companion paper [29], we study the freezeout of in-
verse decays as the mechanism to set the relic abundance
of DM.

This Letter is organized as follows. We begin by outlin-
ing the basic idea for freezeout of inverse decays and de-
rive an analytical understanding of the mechanism. We
then solve the Boltzmann equations of the system and
obtain the DM parameter space. Finally we present a
model that realizes the mechanism.

BASIC IDEA

Here we show that the freezeout of inverse decays can
be responsible for the relic abundance of DM. Consider

a dark matter particle � and an unstable dark sector
particle  that has a decay that contains some number
of � particles in the final state. For simplicity we will
consider a simple decay and inverse decay

  ! �+ � (1)

motivated by a Z2 symmetry in the dark sector. (Other
inverse decay topologies can be considered as well.) Here
� can be a dark sector or visible particle that is assumed
to be in equilibrium with the bath. (Later we will take a
concrete model in which � is a dark photon that kineti-
cally mixes with hypercharge.)
The Boltzmann equation for the abundance of �, as-

suming that � is in equilibrium, is:

ṅ� + 3Hn� = �

 
n � n�

n
eq
 

n
eq
�

!
, (2)

with � the decay rate of  ! ��. We assume that
the DM is cold, namely that it freezes out when non-
relativistic; our numerics presented later on confirm this.
We can thus ignore the thermally averaged time dilation
that would normally appear in the collision term.
Approximate analytic solutions to the Boltzmann

equations can be obtained in the instantaneous freezeout
approximation, but will not always su�ce. The inverse
decay rate is falling o↵ exponentially as e

�(m �m�)/T

(rather than e
�m�/T for the well-studied WIMP), which

is not necessarily fast enough to assume that instanta-
neous freezeout occurs. Further consideration must also
be taken into account because the decays and inverse
decays may not actually be in equilibrium before they
completely decouple.
We begin by calculating the relic abundance when de-

cays are in equilibrium. This will give us an approxi-
mate range of parameter space—couplings and masses—
necessary to reproduce the observed abundance. We first
assume that  is always in chemical equilibrium with
the Standard Model (SM) bath. This can be achieved
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We propose a new thermal dark matter candidate whose abundance is determined by the freezeout
of inverse decays. The relic abundance depends parametrically only on a decay width, while matching
the observed value requires that the coupling determining the width—and the width itself—should
be exponentially small. The dark matter is therefore very weakly coupled to the Standard Model,
evading conventional searches. This INverse DecaY (‘INDY’) dark matter can be discovered by
searching for the long-lived particle that decays into the dark matter at future planned experiments.

INTRODUCTION

The identity of dark matter (DM) is one of the
most pressing open questions in modern day physics.
While the weakly interacting massive particle (WIMP)
paradigm has long guided the particle physics commu-
nity, the absence of experimental evidence for the WIMP
at colliders, direct-detection and indirect-detection ex-
periments stresses the importance of considering DM be-
yond the WIMP. Indeed, recent years have seen a surge
of new DM ideas (see e.g. Refs. [1–15]) which utilize
various processes in the early universe.

One such process is inverse decay, where a DM par-
ticle is produced through the inverse decay of a heavier
particle in the dark sector. Thus far, decays have been
considered in the literature in the context of freeze-in
DM [16], where a slow inverse decay of a bath particle
slowly freezes in the DM abundance; as a process main-
taining chemical equilibrium within the dark sector or
with the SM [7, 8, 13, 17–22]; and in other dark matter
frameworks [16–18, 23–26]. The e↵ects of inverse decays
on dark matter depletion have been considered as a con-
tributing reaction [27, 28], but never as the main process
for setting the dark matter abundance. In this work, and
in a companion paper [29], we study the freezeout of in-
verse decays as the mechanism to set the relic abundance
of DM.

This Letter is organized as follows. We begin by outlin-
ing the basic idea for freezeout of inverse decays and de-
rive an analytical understanding of the mechanism. We
then solve the Boltzmann equations of the system and
obtain the DM parameter space. Finally we present a
model that realizes the mechanism.

BASIC IDEA

Here we show that the freezeout of inverse decays can
be responsible for the relic abundance of DM. Consider

a dark matter particle � and an unstable dark sector
particle  that has a decay that contains some number
of � particles in the final state. For simplicity we will
consider a simple decay and inverse decay

  ! �+ � (1)

motivated by a Z2 symmetry in the dark sector. (Other
inverse decay topologies can be considered as well.) Here
� can be a dark sector or visible particle that is assumed
to be in equilibrium with the bath. (Later we will take a
concrete model in which � is a dark photon that kineti-
cally mixes with hypercharge.)
The Boltzmann equation for the abundance of �, as-

suming that � is in equilibrium, is:

ṅ� + 3Hn� = �

 
n � n�

n
eq
 

n
eq
�

!
, (2)

with � the decay rate of  ! ��. We assume that
the DM is cold, namely that it freezes out when non-
relativistic; our numerics presented later on confirm this.
We can thus ignore the thermally averaged time dilation
that would normally appear in the collision term.
Approximate analytic solutions to the Boltzmann

equations can be obtained in the instantaneous freezeout
approximation, but will not always su�ce. The inverse
decay rate is falling o↵ exponentially as e

�(m �m�)/T

(rather than e
�m�/T for the well-studied WIMP), which

is not necessarily fast enough to assume that instanta-
neous freezeout occurs. Further consideration must also
be taken into account because the decays and inverse
decays may not actually be in equilibrium before they
completely decouple.
We begin by calculating the relic abundance when de-

cays are in equilibrium. This will give us an approxi-
mate range of parameter space—couplings and masses—
necessary to reproduce the observed abundance. We first
assume that  is always in chemical equilibrium with
the Standard Model (SM) bath. This can be achieved
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    -1          -1       1ℤ2 :
DS         DM      SM

Boltzmann equation:

No direct signals of DM; one can look for the mediator in (typically) light long-lived particle searches

…, ELDER,  KINDER,  co-scattering,  co-decay,  zombie,  pandemic,  co-SIMP,  
forbidden,  superWIMP,  squirrel,  catalyzed,  dynamical,  reproductive, …

*only one of these is a joke DM candidate…

OTHER:



dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

where the thermally averaged cross section:

h���̄!ijvrelieq = �
h2
�

neq
� neq

�̄

Z
d3~p�
(2⇡)3

d3~p�̄
(2⇡)3

���̄!ijvrel f
eq
� f eq

�̄

modified expansion rate

modified cross section

numerical codes e.g., 
DarkSUSY, micrOMEGAs, 
MadDM, SuperISOrelic, …

e.g., relentless DM, D’Eramo et al. ’17, …

NLO

Sommerfeld enhancement

Bound State formation

finite T effects

breakdown of necessary 
assumptions leading to 
different form of the 

equation, e.g. violation of 
kinetic equilibrium

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

general 
multi-

component 
dark sector

THERMAL RELIC DENSITY  
OTHER EXCEPTIONS

17
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NON-EQUILIBRIUM EFFECTS



FREEZE-OUT VS. DECOUPLING

DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

where t = q̃2 = (k − k′)2, and after summing over all the spins we get

∑

spins

∣

∣Mscatt
∣

∣

2
=

e4

t2
× tr

(

(#k′ +me)γ
ν(#k +me)γ

λ
)

× tr
(

(#p′ +Mµ)γν(#p +Mµ)γλ
)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
(

(#k′ +me)γ
ν(#k +me)γ

λ
)scatt

↔ − tr
(

(#p2 −me)γ
ν(#p1 +me)γ

λ
)pair

,

tr
(

(#p′ +Mµ)γν(#p+Mµ)γλ
)scatt

↔ − tr
(

(#p′1 +Mµ)γν(#p
′

2 −Mµ)γλ
)pair

,

(8)

and hence
∑

spins

∣

∣Mscatt
∣

∣

2
↔

∑

spins

∣

∣Mpair
∣

∣

2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,

∑

spins

∣

∣Mpair
∣

∣

2
= F (p1, p2, p

′

1, p
′

2) and
∑

spins

∣

∣Mscatt
∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just

2

where t = q̃2 = (k − k′)2, and after summing over all the spins we get
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∣Mscatt
∣

∣

2
=

e4

t2
× tr

(

(#k′ +me)γ
ν(#k +me)γ

λ
)

× tr
(

(#p′ +Mµ)γν(#p +Mµ)γλ
)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
(

(#k′ +me)γ
ν(#k +me)γ

λ
)scatt

↔ − tr
(

(#p2 −me)γ
ν(#p1 +me)γ

λ
)pair

,

tr
(

(#p′ +Mµ)γν(#p+Mµ)γλ
)scatt

↔ − tr
(

(#p′1 +Mµ)γν(#p
′

2 −Mµ)γλ
)pair

,

(8)

and hence
∑

spins

∣

∣Mscatt
∣

∣

2
↔

∑

spins

∣

∣Mpair
∣

∣

2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,

∑

spins

∣

∣Mpair
∣

∣

2
= F (p1, p2, p

′

1, p
′

2) and
∑

spins

∣
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∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just

2

crossing sym.

~

dark matter frozen-out but typically 
still kinetically coupled to the plasma

Torsten Bringmann, University of Hamburg ‒Thermal decoupling of WIMPs

Freeze-out = decoupling !

7

WIMP interactions with heat bath of SM particles:
� SM

SM SM SM�

� �

(annihilation) (scattering)

n�Boltzmann suppression of 
scattering processes much more frequent
continue even after chemical decoupling (“freeze-out”) at Tcd � m�/25

Kinetic decoupling much later:
Random walk in 
momentum space
� Ncoll � m�/T

Schmid, Schwarz, & Widerin,  PRD ’99; Green, Hofmann & Schwarz, JCAP ’05, ...

�r(Tkd) � Ncoll/�el ⇥ H�1(Tkd)

Boltzmann suppression of DM vs. SM scatterings typically more frequent)

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

f� ⇠ a(µ)f eq
�

Two consequences:

1. During freeze-out (chemical decoupling) typically:
2. If kinetic decoupling much, much later: possible impact on the matter power spectrum

i.e. kinetic decoupling can have observable consequences and affect e.g. missing satellites problem
see e.g., Bringmann, Ihle, Karsten, Walia ’16 19



EARLY KINETIC DECOUPLING?
A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

20
D)    Multi-component dark sectors

e.g., additional sources of DM from late decays, …
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HOW TO GO BEYOND KINETIC EQUILIBRIUM?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilations

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in the full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution
no constraining assumptions

numerically challenging
often an overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically
manifestly captures all of the relevant physics

finite range of validity
no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

y ⌘ m�T�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T� ⌘ g�

3m�n�

Z
d
3
p

(2⇡)3
p
2
f�(p) (24)

2

…fB
E cBE



https://drake.hepforge.org

Prediction for the DM 
phase space distribution

Late kinetic decoupling 
and impact on cosmology

see e.g., 1202.5456

Interplay between chemical and 
kinetic decoupling

Applications:

DM relic density for 
any (user defined) model

*

*

at the moment for a single DM species and w/o 
co-annihlations… but stay tuned for extensions! 22

…

(only) prerequisite:  
 Wolfram Language (or Mathematica)

NEW TOOL! 
GOING BEYOND THE STANDARD APPROACH

https://drake.hepforge.org


EXAMPLE A:
SCALAR SINGLET DM

23

DM

DM

SM

SM

DM

SM

DM

SM
>>A)



EXAMPLE A 
SCALAR SINGLET DM
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h�vreli2 ⌘
g
2
�

3Tm�n
2
�

Z
d
3
p

(2⇡)3

Z
d
3
p̃

(2⇡)3
p
2
vrel��̄�!X̄Xf(E)f(Ẽ) (1)

where the equilibrium number density in the nonrelativistic regime is n
eq
� = m

3
�g�K2(x)/(2⇡

2
x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the

Boltzmann equation can be written as:

y
0

y
= �Y

0

Y

✓
1� h�vreli2

h�vreli

◆
�
✓
1� x

3

g
0
⇤S
g⇤S

◆
2m�c(T )

Hx

✓
1� yeq

y

◆
, (2)

with

c(T ) =
1

12(2⇡)3m4
�T

X

X

Z
dk k

5
!
�1

g
± �

1⌥ g
±�
Z 0

�4k2

(�t)
1

8k4
|Mel|2 . (3)

To summarize we get coupled equations:

Y
0

Y
= �

1� x
3
g0
⇤S

g⇤S

Hx
sY

 
h�vreli|x=m2

�/(s
2/3y) �

Y
2
eq

Y 2
h�vreli|x

!
(4)

y
0

y
= �

1� x
3
g0
⇤S

g⇤S

Hx

"
2m�c(T )

✓
1� yeq

y

◆
(5)

�sY

 ⇣
h�vreli � h�vreli2

⌘

x=m2
�/(s

2/3y)
�

Y
2
eq

Y 2

⇣
h�vreli � h�vreli2

⌘

x

!#
.

The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,

LS =
1

2
@µS@

µ
S � 1

2
µ
2
SS

2 � 1

2
�sS

2|H|2 . (6)

After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving

ms =

r
µ
2
S +

1

2
�sv

2
0 , (7)

where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.

�vrel =
2�

2
sv

2
0p

s
|Dh(s)|2�h(

p
s) , (8)

where

|Dh(s)|2 ⌘ 1

(s�m
2
h)

2 +m
2
h�

2
h(mh)

. (9)

• For ms < mh/2, the width in the propagator Dh(s) must be increased by the invisible contribution �inv

due to h ! SS:

�inv =
�
2
sv

2
0

32⇡mh

�
1� 4m

2
s/m

2
h

�1/2
, (10)

• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign

w.r.t. [?], as pointed out by P. Gondolo):

vrel�hh =
�
2
s

16⇡s2vs


(a

2
R + a

2
I)svsvh

� 4�sv
2
0

✓
aR � �sv

2
0

s� 2m
2
h

◆
log

����
m

2
s � t+

m2
s � t�

����

+
2�

2
sv

4
0svsvh

(m2
s � t�)(m2

s � t+)

�
, (11)

where vi =
p
1� 4m

2
i /s, t± = m

2
s +m

2
h � 1

2s(1⌥ vsvh), and

aR ⌘ 1 + 3m
2
h(s�m

2
h)|Dh(s)|2

aI ⌘ 3m
2
h

p
s�h(mh)|Dh(s)|2. (12)

1

h�vreli2 ⌘
g
2
�

3Tm�n
2
�

Z
d
3
p

(2⇡)3

Z
d
3
p̃

(2⇡)3
p
2
vrel��̄�!X̄Xf(E)f(Ẽ) (1)

where the equilibrium number density in the nonrelativistic regime is n
eq
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3
�g�K2(x)/(2⇡

2
x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the

Boltzmann equation can be written as:
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To summarize we get coupled equations:
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving
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. (9)

• For ms < mh/2, the width in the propagator Dh(s) must be increased by the invisible contribution �inv

due to h ! SS:

�inv =
�
2
sv

2
0

32⇡mh

�
1� 4m

2
s/m

2
h

�1/2
, (10)

• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign

w.r.t. [?], as pointed out by P. Gondolo):

vrel�hh =
�
2
s

16⇡s2vs


(a

2
R + a

2
I)svsvh

� 4�sv
2
0

✓
aR � �sv

2
0

s� 2m
2
h

◆
log

����
m

2
s � t+

m2
s � t�

����

+
2�

2
sv

4
0svsvh

(m2
s � t�)(m2

s � t+)

�
, (11)

where vi =
p
1� 4m

2
i /s, t± = m

2
s +m

2
h � 1

2s(1⌥ vsvh), and

aR ⌘ 1 + 3m
2
h(s�m

2
h)|Dh(s)|2

aI ⌘ 3m
2
h

p
s�h(mh)|Dh(s)|2. (12)

1

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

Annihilation 
processes:

El. scattering 
processes:

resonant non-resonant

S

S

h

q,l

q,l

S S

q,l q,l

h
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄

2
hS

-dependence of ‡SI and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄

≠2
hS

, owing to its de-
pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].
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RESULTS
EFFECT ON THE Ωh2

effect on relic density: 
up to O(~10)

[… Freeze-out at few GeV        what is the abundance of heavy quarks in QCD plasma?

 two scenarios: QCD = A - all quarks are free and present in the plasma down to Tc =154 MeV
QCD = B - only light quarks contribute to scattering and only down to 4Tc …]

m
D

M
 =

 6
2.

5 
G

eV



DM ELASTIC SCATTERINGS
(FEW DETAILS AND CHALLENGES…)



ELASTIC SCATTERING COLLISION TERM
E (@t �H~p ·r~p) f� = C[f�]

contains both scatterings and annihilations

Cself ∼ ∫ d Π̃ ℳ
2

χχ↔χχ (fχ( p̃)fχ(k̃) − fχ(p)fχ(k))

Cel ∼ ∫ d Π̃ ℳ
2

χ f↔χ f (fχ( p̃)f eq
f (k̃)(1 ± f eq

f (k)) − fχ(p)f eq
f (k)(1 ± f eq

f (k̃)))
χ(p) χ( p̃)

f(k) f(k̃)

χ(p) χ( p̃)

χ(k) χ(k̃)

Cann ∼ ∫ d Π̃ ℳ
2

χχ↔f f̄ (f eq
f ( p̃)f eq

f (k̃) − fχ(p)fχ(k))
χ(p) f( p̃)

χ(k) f(k̃)

d Π̃ = dΠp̃dΠkdΠk̃δ(4)( p̃ + p − k̃ − k)

Annihilation:

El. scattering (on SM particles):

El. self-scattering (DM on DM):

easy easy

mediumhard

easy: no unknown  under integral 

 1D integration

fχ
⇒

medium: no unknown  under integral 

 2-3D integration

fχ
⇒

hard: unknown  under integral 

 2-4D integration

fχ
⇒

hard

An approximate method needed!
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APPROACHES

I) Expand in „small momentum transfer”
Bringmann, Hofmann ’06

Kasahara ’09; Binder, Covi, Kamada, Murayama, Takahashi, Yoshida ’16

A.H. & S. Chatterjee, work in progress… 
(on different expansion schemes)

MDM ≫ | ⃗q | ∼ T ≫ mSM

typical momentum transfer

Here, |M|2 is the spin-averaged invariant amplitude squared, and f eq is a thermal distribution,

f eq = (exp{(−p · u− µ)/T} ± 1)−1 (2.5)

with a temperature T " T0(τ)+T1(x), a reference four velocity uµ " (1,u(x)), and a chemical
potential µ.

If the elastic scattering is T -inversion invariant, |M|2’s are identical between the forward
and backward scatterings,

|M(1 + 2 → 3 + 4)|2 = |M(3 + 4 → 1 + 2)|2 = |M|2 . (2.6)

In the presence of four-momentum conservation δ4(p1 + p2 − p3 − p4), thermal distributions
satisfy

f eq
2 (1∓ f eq

4 ) = exp{−(p1 − p3) · u/T}f eq
4 (1∓ f eq

2 ) . (2.7)

From (2.6) and (2.7), we obtain the following relation:

Seq(p1, p3) = exp{−(p1 − p3) · u/T}Seq(p3, p1). (2.8)

Thus, the collision term is

C[f1] =
1

2

∑

s3

∫

d3p3

(2π)32E3
Seq(p3, p1)

[

f3(1∓ f1)− exp{−(p1 − p3) · u/T}f1(1∓ f3)
]

.(2.9)

We can easily check that the above expression satisfies the so-called detailed balance, i.e.,
C[f1] = 0 if f1 = f eq

1 and f3 = f eq
3 , which follows from the T -inversion invariance.

We assume that momentum transfer q̃ = p3 − p1 is smaller than the typical DM mo-
mentum p1i and expand the collision term up to the second order,

f3 " f1 + q̃i
∂f1
∂p1i

+
1

2
q̃iq̃j

∂2f1
∂p1i∂p1j

, exp{−(p1 − p3) · u/T} = 1 +Aiq̃i +Bij q̃iq̃j ,

(2.10)

where

Ai = −
v1i − ui

T
, Bij =

1

2

(

∂Ai

∂p1j
+AiAj

)

, (2.11)

with the velocity of the particle v = p/E. After collecting terms, we obtain

[

f3(1∓ f1)− exp{−(p1 − p3)/T}f1(1∓ f3)
]

" αiq̃i +
1

2

(

∂αi

∂p1j
+ αiAj

)

q̃iq̃j , (2.12)

where

αi =
∂f1
∂p1i

−Aif1(1∓ f1) . (2.13)

The collision term is

C[f1] "
1

2

{

αiβi +
1

2

(

∂αi

∂p1j
+ αiAj

)

γij
}

, (2.14)

– 4 –

δ(3)(p̃ + k̃ − p − k) ≈ ∑
n

1
n!

(q∇p̃)nδ(3)(p̃ − p)

) all lead to Fokker-Planck type eq.

II) Replace the backward term with a simpler one
(i.e. a relaxation-like approximation)

Ala-Mattinen, Kainulainen ’19

Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen ’22

As alluded above, the collision integral corresponding to the first term is a multi-dimensional
convolution over the perturbation, which is typically a smooth function in p even when
�f(p2, t) itself is not a smooth function. The key element of our scheme is to use the free-
dom in choosing the function gm(t): we can in particular adjust it such that integrated elastic
collision term corresponding to the division (3.9) vanishes separately for the forward and back-
ward scattering terms. With this definition the back-reaction term should become a smooth,
low amplitude variation around the actual elastic collision integral, whose integrated effect
should be small. This term we then drop from our equation. We provide more details and an
estimation of the accuracy of this approach by comparison to exact elastic collision integrals
in the appendix C. This corresponds to setting, separately for each elastic collision channel
m:

ĈE,m(p1, t) ! ��f(p1, t)�
m

E (p1, t)

= ( gm(t)feq(p1, t)� f(p1, t) ) �
m

E (p1, t) , (3.10)

where gm(t) is defined to preserve the conservation of particle number in elastic collisions:
Z

d3p1
(2⇡)3

ĈE,m(p1, t) ⌘ 0 ) gm(t) ⌘

R
dp1 p21 f(p1, t)�

m

E (p1, t)R
dp1 p21 feq(p1, t)�

m

E (p1, t)
. (3.11)

The first term in the second line of the equation (3.10) replaces the the back-reaction term
in the original elastic collision integral (3.7). It ensures that ĈE(p1, t) does not change the
particle number and drives the distribution towards the pseudo-equilibrium form (2.4). Note
that both equations (3.10) and (3.11) are essential: without the latter the former would make
no sense.

After some manipulations each elastic rate function �m

E (p1, t) can be written in a similar
manner as Eq. (3.4):

�m

E (p1, t) ⌘ �m

E [fm

eq ; p1, t] =
1

2⇡2

Z 1

0
dp3p

2
3 f

m

eq(p3, t) [vMøl�]
Sm
E (p1, p3) , (3.12)

where we defined, similarly to Eq. (3.5):

[vMøl�]
Sm
E (p1, p3) =

1

8p1p3E1E3

Z
s
m
+

s
m
�

ds�1/2(s,m2
m,m

2
S)�

Sm
E (s) . (3.13)

Here s
m
± = m

2
m + m

2
S + 2E1E3 ± 2p1p3 and �

Sm
E (s) is the usual 2-body elastic cross section

in channel m and the kinetic function �(x, y, z) ⌘ (x� y � z)2 � 4yz. Note that m, S and E
are mere labels in equation (3.13). This expression is actually valid for any initial states ab,
and both for the elastic and the inelastic interactions. In particular equation (3.6) is just a
special case of (3.13), where ab = SS in the annihilation channel.

When applied to the case of self-scatterings of the scalar particles the above reasoning
results to

ĈE,S(p1, t) ⇡ g
2
S(t)feq(p1, t)�

S
E[feq; p1, t]� f(p1, t)�

S
E[f ; p1, t] , (3.14)

where the decay function is defined in Eq. (3.12) with the cross section [vMøl�]SSE and gS is
obtained from the conservation of particle number:

) g
2
S(t) =

R
dp1 p21 f(p1, t)�

S
E[f ; p1, t]R

dp1 p21 feq(p1, t)�
S
E[feq; p1, t]

. (3.15)

– 9 –

) simpler, but generally incorrect

III) Langevin simulations
Kim, Laine ’23

The average velocity can in turn be expressed as
〈

v2
〉

≈ 3T/mϕ, where we have introduced

the notation mϕ for the mass of a generic non-relativistic dark matter particle.

When we implement the Langevin equation in a cosmological context, time and tempera-

ture are not independent variables. If the system does not undergo phase transitions, so that

the temperature evolves smoothly, we may take

x ≡ ln

(
Tmax

T

)

, (...)′ ≡
d(...)

dx
, (2.6)

as a time-like variable (we choose Tmax ≡ 5 GeV). The Jacobian to physical time is

dx

dt
= 3c2sH , (2.7)

where c2s = ∂p/∂e is the speed of sound squared. Furthermore the entropy density, s, satisfies

ṡ+ 3Hs = 0, and consequently sa3 = const. If we now define dimensionless momenta as

p̂i ≡
pi

s1/3
, (2.8)

and denote

η̂ ≡
η

3c2sH
, ζ̂ ≡

ζ

3c2sHs2/3
, (2.9)

then Langevin dynamics can be expressed as

(p̂i)′ = −η̂ p̂i + f̂ i ,
〈

f̂ i(x1) f̂
j(x2)

〉

= ζ̂ δij δ(x1 − x2) . (2.10)

Given the constancy of sa3, we note that p̂i ∝ api ≡ ki, known as a comoving momentum.

A key element of the dynamics is that the coefficients η̂ and ζ̂ are not constant but evolve

rapidly with x. The Hubble rate reads

H =

√

8πe

3m2
pl

, (2.11)

where e is the energy density and mpl ≈ 1.22091×1019 GeV is the Planck mass. Since e ∼ T 4

in the Standard Model plasma, H scales as ∼ T 2. The entropy density scales as s ∼ T 3. The

coefficient ζ is suppressed by the mass of the dark matter particle and that of the mediator

between the visible and dark sectors. For dimensional reasons, we may write it as

ζ ≡
ξ T 7

(100 GeV)4
, (2.12)

with ξ displaying modest temperature dependence. Different contributions to ξ in the scalar

singlet model, derived in appendix A, are shown in fig. 1(left). The speed of sound squared can

often be approximated as 3c2s ' 1, though it experiences corrections when mass thresholds are

3

stochastic term, taking care of detailed balance

) very new, promising (?)…

IV) Fully numerical implementation
A.H. & M. Laletin 2204.07078
Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen ’22

(focus on DM self-scatterings)

) doable, but very CPU expensive
Du, Huang, Li, Li, Yu ’21

28

https://arxiv.org/abs/2204.07078


ISSUES…
I) Expand in „small momentum transfer”

Bringmann, Hofmann ’06

Kasahara ’09; 
Binder, Covi, Kamada, Murayama, Takahashi, Yoshida ’16

Here, |M|2 is the spin-averaged invariant amplitude squared, and f eq is a thermal distribution,

f eq = (exp{(−p · u− µ)/T} ± 1)−1 (2.5)

with a temperature T " T0(τ)+T1(x), a reference four velocity uµ " (1,u(x)), and a chemical
potential µ.

If the elastic scattering is T -inversion invariant, |M|2’s are identical between the forward
and backward scatterings,

|M(1 + 2 → 3 + 4)|2 = |M(3 + 4 → 1 + 2)|2 = |M|2 . (2.6)

In the presence of four-momentum conservation δ4(p1 + p2 − p3 − p4), thermal distributions
satisfy

f eq
2 (1∓ f eq

4 ) = exp{−(p1 − p3) · u/T}f eq
4 (1∓ f eq

2 ) . (2.7)

From (2.6) and (2.7), we obtain the following relation:

Seq(p1, p3) = exp{−(p1 − p3) · u/T}Seq(p3, p1). (2.8)

Thus, the collision term is

C[f1] =
1

2

∑

s3

∫

d3p3

(2π)32E3
Seq(p3, p1)

[

f3(1∓ f1)− exp{−(p1 − p3) · u/T}f1(1∓ f3)
]

.(2.9)

We can easily check that the above expression satisfies the so-called detailed balance, i.e.,
C[f1] = 0 if f1 = f eq

1 and f3 = f eq
3 , which follows from the T -inversion invariance.

We assume that momentum transfer q̃ = p3 − p1 is smaller than the typical DM mo-
mentum p1i and expand the collision term up to the second order,

f3 " f1 + q̃i
∂f1
∂p1i

+
1

2
q̃iq̃j

∂2f1
∂p1i∂p1j

, exp{−(p1 − p3) · u/T} = 1 +Aiq̃i +Bij q̃iq̃j ,

(2.10)

where

Ai = −
v1i − ui

T
, Bij =

1

2

(

∂Ai

∂p1j
+AiAj

)

, (2.11)

with the velocity of the particle v = p/E. After collecting terms, we obtain

[

f3(1∓ f1)− exp{−(p1 − p3)/T}f1(1∓ f3)
]

" αiq̃i +
1

2

(

∂αi

∂p1j
+ αiAj

)

q̃iq̃j , (2.12)

where

αi =
∂f1
∂p1i

−Aif1(1∓ f1) . (2.13)

The collision term is

C[f1] "
1

2

{

αiβi +
1

2

(

∂αi

∂p1j
+ αiAj

)

γij
}

, (2.14)

– 4 –

δ(3)(p̃ + k̃ − p − k) ≈ ∑
n

1
n!

(q∇p̃)nδ(3)(p̃ − p)

 GeV,  GeV,  mχ = 100 m = 100 x = 25

approx.: plasma frame  CM frame→

0 20 40 60 80 100

-1.×10-24

-5.×10-25

0

5.×10-25

1.×10-24

C2 C4 C6 C8

0 20 40 60 80 100
-4.×10-110

-2.×10-110

0

2.×10-110

4.×10-110

C2 C4 C6 C8

 GeV,  GeV,  mχ = 100 m = 1 x = 250

⇒ Cel = C0 + C2 + C6 + . . .

(not justified for all collisions in the plasma)
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WHEN DOES THE FOKKER-PLANCK APPROX. WORK?

𝑚𝐷𝑀

𝑚𝑆𝑀
= 1.1,

𝑇𝐷𝑀

𝑇𝑆𝑀
= 0.95

eg.: 𝑀
2 ∝ 𝑡2eg.: 

 𝑀
2 ∝ 𝑐𝑜𝑛𝑠𝑡𝑡 .

𝑀
2 ⟶ 𝑡𝑛1(𝑠 − (𝑚𝐷𝑀 + 𝑚𝑆𝑀)2)

𝑛2(𝑢 − (𝑚𝐷𝑀 − 𝑚𝑆𝑀)2)
𝑛3

 transfer 
momentum
∝  relative 

velocity
∝  velocities∝

1. Scattering particle with masses 
significantly smaller than DM mass 
(small reduced mass small momentum transfer) 

& 
2. DM  temperatures close to the SM 

temperature (eg.: near kinetic decoupling) 

& 
3. Scattering amplitudes that aren’t 

strongly dependent on momentum 
transfer (the dropped higher order terms are 
more relevant for an amplitude sensitive to said 
dropped quantity)

⇒

30work in progress with S. Chatterjee  



II: 
MULTI-COMPONENT DARK MATTER



STATE-OF-THE-ART…

32

There are numerous results for two-component dark sectors… but without full generality and 
in fact narrowly tailored to specific models

IPPP/23/82

micrOMEGAs 6.0: N-component dark matter

G. Alguero1, G. Bélanger2, F. Boudjema2, S. Chakraborti3,

A. Goudelis4, S. Kraml1, A. Mjallal2, A. Pukhov5

1) Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, Grenoble, France

2) LAPTh, CNRS, Université Savoie Mont-Blanc, 9 Chemin de Bellevue, 74940
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4) Laboratoire de Physique de Clermont (UMR 6533), CNRS/IN2P3, Univ. Clermont

Auvergne, 4 Av. Blaise Pascal, F-63178 Aubière Cedex, France

5) Skobeltsyn Inst. of Nuclear Physics, Moscow State Univ., Moscow 119992, Russia

Abstract

micrOMEGAs is a numerical code to compute dark matter (DM) observables in

generic extensions of the Standard Model of particle physics. We present a new

version of micrOMEGAs that includes a generalization of the Boltzmann equations

governing the DM cosmic abundance evolution which can be solved to compute the

relic density of N-component DM. The direct and indirect detection rates in such

scenarios take into account the relative contribution of each component such that

constraints on the combined signal of all DM components can be imposed. The co-

scattering mechanism for DM production is also included, whereas the routines used

to compute the relic density of feebly interacting particles have been improved in

order to take into account the e↵ect of thermal masses of t-channel particles. Finally,

the tables for the DM self-annihilation - induced photon spectra have been extended

down to DM masses of 110 MeV, and they now include annihilation channels into

light mesons.
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scenarios take into account the relative contribution of each component such that
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The most general tool so far is the newly released:

In the multi-component DM case we will ignore e↵ects related to the di↵erent spin-
statistical distributions of particle species (Fermi-Dirac/Bose-Einstein), even though these
can be quantitatively relevant for the case of FIMPs [6].4 The number of events of the
type a, b ! c, d per unit space-time volume assuming equilibrium densities for all incoming
particles reads

N̄a,b!c,d =
Tgagb

8⇡4

Z p
sp

2
ab(s)K1(

p
s

T
)Cab�a,b!c,d(s)ds , (12)

where Cab is a combinatoric factor, Cab = 1/2 if a = b and 1 otherwise, ga is the number
of intenal degrees of freedom and pab is the momentum of the incoming particles a and b

in their centre-of-mass frame. Throughout the paper s is the usual Mandelstam variable
(with

p
s representing the total energy of the system). The detailed balance equation

implies that
N̄a,b!c,d = N̄c,d!a,b (13)

and we introduce the function

hv�↵���i =
1

C↵�n̄↵(T )n̄�(T )

X

a2↵,b2�,c2�,d2�
if(↵=�)ab; if(�=�)cd

N̄a,b!c,d . (14)

Under these notations, and assuming that each DS contains at most one DM candidate,
the equation describing the evolution of the abundance of the µ-th DM candidate only
assuming 2 ! 2 reactions reads

dnµ

dt
= �

X

↵�; ��

n↵n� C↵�hv�↵���i(�µ↵ + �µ� � �µ� � �µ�)� 3H(T )nµ , (15)

where H(T ) is the Hubble expansion rate.
Usually, the DM evolution equations are solved in terms of the abundance Yµ. The

entropy conservation equation
ds

dt
= �3Hs (16)

allows to convert the time evolution equation into an evolution equation with respect to
the entropy density s as

3H
dYµ

ds
=

X

↵�; ��

Y↵Y�C↵�hv�↵���i(�µ↵ + �µ� � �µ� � �µ�) . (17)

Writing the evolution equations in terms of the entropy density rather than in terms of
the temperature allows for a more compact notation; one can recover the corresponding
equation in terms of temperature using

3H
dYµ

ds
=

3H
ds
dT

dYµ

dT
=

H̄T

s

dYµ

dT
(18)

4
This approximation is adopted for reasons of computational e�ciency. Note, however, that in

micrOMEGAs statistical e↵ects can be fully accounted for in the case of single-component DM, as de-

scribed in [6].

8

Solves set of equations for the yields (only):

https://arxiv.org/abs/2312.14894


WHAT IF A NON-MINIMAL SCENARIO?
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DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

In a minimal WIMP case only two types of processes are relevant:

drives number density evolution
(keeping the distribution to be in local thermal eq.)

scatterings typically more frequent

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

crossing sym.



A,B

A,B

SM

SM

(co-)annihilation

A

A

B

B

A,B
SM

SM

conversion elastic scattering

inelastic scattering self scattering

decay

A,B

SM

A,B

SM

A,B

SM’

B,A

SM

A,B A,B

A,B A,B

A,B
B,A

SM

A

B

SM

SM

A

A

A

B, SM

A,B

A,B

A,B

A,B

A,B
A,B

A,B

SM

SM

A,B
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WHAT IF A NON-MINIMAL SCENARIO?

3-2 cannibal

semi-annihilation/semi-conversion

A,B — two different dark sector states (at least one needs to be stable)

+ processes involving even more particles, e.g. …2 ↔ 4

Note: some of these processes affect not only # density, but also 
strongly modify the energy distribution of DM particles!

micrOMEGAs: set to ∞

micrOMEGAs: set to 0



EXAMPLE C:
SEMI-ANNIHILATION
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C)    Scatterings and annihilation have different structure
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DARK MATTER SEMI-ANNIHILATION
AND ITS SIMPLEST REALIZATION 

see also Cai, Spray 1807.00832 

Z3 complex scalar singlet:

just above the Higgs threshold semi-annihilation dominant!
Belanger, Kannike, Pukhov, Raidal ’13

very weak 
elastic scatterings

semi-annihilation 
by itself does not 
equilibrate DM

self-heating!
but rather leads to

implications for 
ID

D’Eramo, Thaler ’10; …

DM

DM SM

DMDM is a thermal relic but with freeze-out governed 
by the semi-annihilation process

These developments are especially relevant precisely in the regions that are still allowed

by the experimental data and where the improved precision of theoretical predictions is

required for robust claims of exclusion of the whole parameter space of the thermal Z3

singlet dark matter model.

The aim of this paper is to provide a timely update of the past results [53]. While the

unitarity constraints are often computed in the limit of infinite energy, we calculate them

at finite energy with the help of the latest version [75] of the SARAH package [77–80].

We use the one-loop e↵ective potential to calculate the bounds of absolute stability and

metastability of the EW minimum from the tunnelling rate with the help of the AnyBubble

package [81].1 These constraints, in particular the one from the unitarity, put an upper

bound on the singlet cubic self-coupling and therefore on the semi-annihilation cross section.

We take into account early kinetic decoupling around the Higgs resonance and for large

semi-annihilation, and use the micrOMEGAs code [83] to calculate relic density in the

larger part of the parameter space. The micrOMEGAs is also used to compute predictions

for direct and indirect detection signals. A large part of the parameter space is already

ruled out by XENON1T [47]. Thanks to the new unitarity constraints, we manage to

further restrict the model.

We introduce the model in section 2. Various theoretical and experimental constraints

are considered in section 3. Dark matter freeze-out, the impact of early kinetic decoupling

and semi-annihilation are studied in section 4. Section 5 discusses prospects of direct and

indirect detection of dark matter. We conclude in section 6. Details of the field-dependent

masses and counter-terms for the e↵ective potential are given in the appendix A.

2 The model

The most general renormalisable scalar potential of the Higgs doublet H and the complex

singlet S, invariant under the Z3 transformation H ! H, S ! e
i2⇡/3

S, is given by

V = µ
2

H |H|2 + �H |H|4 + µ
2

S |S|2 + �S |S|4 + �SH |S|2 |H|2 + µ3

2
(S3 + S

†3). (2.1)

This is the only possible potential with this field content and symmetry. Without loss of

generality, we can take µ3 real and non-negative.

The mass of the Higgs boson is Mh = 125.09 GeV [84] and the Higgs vacuum expec-

tation value (VEV) v = 246.22 GeV. We fix the parameters

µ
2

H = �
M

2

h

2
,

�H =
1

2

M
2

h

v2
,

µ
2

S = M
2

S � �SH

v
2

2
.

(2.2)

Dark matter mass MS , the Higgs portal �SH , the singlet cubic coupling µ3 and the singlet

quartic self-coupling �S are left as free parameters.

1
The first-order phase transition from thermal tunnelling into the EW minimum can produce a measur-

able gravitational wave signal, but only in a parameter space region with DM underdensity [82].

– 3 –

Kamada et al. 1707.09238 



LESS SIMPLE EXAMPLE

Semi-annihilating Z3 scalar DM and GW    (M. Laletin) 3

Inert doublet + scalar singlet + Z3 symmetry

Inert doublet and scalar singlet are not coupled to SM 
fermions directly

Classical Inert Doublet Model Classical Scalar Singlet Model (Z2)SM Higgs

Z3 mixing terms

Credit: D. Weir

Such a scalar potential allows 
for FOPT  nucleation of bubbles 
& stochastic GW background

⇒

Inert doublet model  an with additional scalar singlet :H1, H2 S

N. Benincasa, A.H, K. Kannike & M. Laletin 2312.04627 37

https://arxiv.org/abs/2312.04627
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Figure 2. Spin-independent direct detection cross section vs. dark matter mass. Top panel: points
dominated by �S12; middle panel: points dominated by µ00

S
and µSH ; bottom panel: more general

points. Also shown are the sensitivity curves of the XENON1T (2018) [11], PandaX-4T (2021) [12],
LZ (2022) [13] in grey and the projected sensitivity curve for XENONnT [135] in dashed grey.
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Figure 5. Peak amplitude of the GW signal as a function of peak frequency with points from the
scan in Eq. (7.2). Also shown are the PLI sensitivity curves of future detectors LISA, BBO and
DECIGO. The left panel highlights the semi-annihilation rate, while the right panel distinguishes
single-step from multi-step PTs.

8 Conclusions

We have explored the cosmology of the Z3 symmetric dark matter model with an inert

doublet and a complex singlet with the emphasis on detectability of the gravitational-wave

signal and dark-matter phenomenology. In order for the model to be in agreement with

direct-detection limits the dark matter candidate needs to be a singlet-like state arising

from the mixing of the singlet and the neutral part of the inert doublet. This setup opens

an interesting possibility of important or even dominant semi-annihilation processes that

modifies the thermal DM production through an early kinetic decoupling: if the relic density

is determined via semi-annihilation, the dark matter-Higgs boson couplings that would keep

DM in kinetic equilibrium via elastic collisions are suppressed.

We performed MCMC scans to not only produce general coupling configurations avail-

able to the model, but also to look specifically at large semi-annihilation (through a large

cubic coupling µ00
S
or the quartic semi-annihilation coupling �S12 coupling). We find that

for the points with dominant semi-annihilation, strong suppression of the direct-detection

signal comes also with weak FOPTs whose GW signals would lie orders of magnitude be-

low detection projections in a foreseeable future. On the other hand, a general scan of the

model reveals points near the detection limits of LISA, DECIGO and BBO.

We then also computed the GW signal for uniformly distributed random general scan

allowing for underabundant singlet-like x1 with relic density below the Planck constraint.

(There could be either an additional non-thermal production mechanism or another DM

component.) In that case we found a sizable portion of the parameter space leading to

a single-step or a multi-step phase transition producing strong enough GW signal to be

potentially detected by LISA, DECIGO or BBO.

– 24 –

SCAN RESULTS
color: strength of semi-annihilation vs. annihilation

Some (small) portion of the allowed parameter space 
will be detectable with future GW instruments

Significant fraction of points 
has early kinetic decoupling
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EXAMPLE D:
WHEN ADDITIONAL INFLUX OF DM ARRIVES
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D)    Multi-component dark sectors

Sudden injection of more DM particles distorts 
(e.g. from a decay or annihilation of other states)

fχ(p)

- this can modify the annihilation rate (if still active)

- how does the thermalization due to elastic scatterings happen?



co
m

ov
in

g 
D

M
 n

um
be

r 
de

ns
ity

time

unstable long-lived state (decaying to DM)

DM from freeze-out

expectation

also can happen!?

(if increased annihilation)
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DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

nBE (i.e
. en

force
d 

kin
etic

 eq
uilib

riu
m)

fBE (no self-
scatterings)

fBE (with self-
scatterings)

no enhanced 
annihilation, 
more DM in 

the end

some injected 
particles will 

annihilate together 
with themselves and 

cold component

energy redistribution 
will allow more DM 
particles to reach 

energies over 
annihilation threshold 
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DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

number densityY ∼ temperaturey ∼ momentum distributionp2 f (p) ∼

EXAMPLE EVOLUTION

x = 100

sub-thershold +

x = 80

sub-thershold +

x = 60

sub-thershold +

x = 40

sub-thershold +

x = 34

sub-thershold +

0 50 100 150 200
0.00

0.05

0.10

0.15

0.20

no decay

eq.

nBE

fBE

fBE gχ=0

20 40 60 80 100

10-13

10-12

10-11

10-10
sub-thershold +

20 40 60 80 100100

101
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103

AH, Laletin 2204.07078
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EXAMPLE D:
EFFECT OF CONVERSION PROCESSES
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THE MODEL

44

DS

SM

χ1, χ2

2 Dirac fermions
a

pseudo-scalar mediator

ℒint =

Let’s take one of the simplest two-component DM models:

Main motivation (for models in the literature with pseudo-scalar mediator):

−iλ af̄γ5 f−iλ1 aχ̄1γ5χ1 −iλ2 aχ̄2γ5χ2
coupled directly to SM fermions in a MFV way

Evasion of the direct detection bounds while giving strong signal in indirect 
detection, in particular for explaining the Galactic Centre excess

(see e.g. „Coy DM”)
C. Boehm et al. 1401.6485, …

https://arxiv.org/abs/1401.6485


EXAMPLE CASE
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20 40 60 80

1

5

10

50

100

x=mχ1 /T

y

20 40 60 80
10-11

10-10

10-9

10-8

10-7

x=mχ1 /T

Y
=n

i/s

number densityY ∼ temperaturey ∼ momentum distributionp2 f (p) ∼

equilibrium

equilibrium

χ1

χ2

nBE fBE

effect on relic 
density:  O(~5)

Large shift in temperature 
& distribution function

Mass [GeV] Coupling
M1 40.  0.04
M2 30.  0.02
Ma 65.  0.001
Mf 10.

λ1
λ2
λ

Note: conversions are ubiquitous in multicomponent models…

work in progress with S. Chatterjee  



3. Kinetic equilibrium is a necessary (often implicit) assumption for 
standard relic density calculations in all the numerical tools…

(we are working on extending                 
to multi-component models with regimes beyond kinetic equilibrium)

…while it is not always warranted!

2. In recent years a significant progress in refining the relic density 
calculations (not yet fully implemented in public codes!)

TAKEAWAY MESSAGES

46

1. Non-standard freeze-out encompasses a plethora of models, 
ideas and possibilities, that have a similar theoretical standing to the 
standard WIMP-like freeze-out, while possibly quite different 
phenomenology


