THE RELIC DENSITY OF HEAVY NEUTRALINOS

Andrzej Hryczuk

NCBJ Warsaw & TU Munich

in collaboration with:

Martin Beneke, Aoife Bharucha, Francesco Dighera, Charlotte Hellmann, Stefan Recksiegel and Pedro Ruiz-Femenia

to appear soon...

MOTIVATION WHY HEAVY NEUTRALINOS AS DM?

as DD limits improve, WIMP masses $\mathcal{O}(100\,\mathrm{GeV})$ less likely

no sign of new physics at the LHC as well

+ SUSY \Rightarrow neutralino DM "moves to" $\mathcal{O}(1 \text{ TeV})$

Note: for heavy neutralinos ID challenging but can be very relevant

see talk of E. Sessolo

MOTIVATION

WHY COMPUTE RELIC DENSITY WITH HIGH PRECISION?

$$\Omega_{\rm CDM} h^2 = 0.1188 \pm 0.0010$$

Planck + lensing + BAO, '15

uncertainty < 1%*

* does not change much when varying experimantal data combinations

widely used codes e.g. DarkSUSY, micrOMEGAs have comparable (if not slightly worse) numerical precision

theoretical uncertainty significantly larger!

(one-)loop corrections

non-perturbative effects

LL resummation

Sommerfeld enhancement (SE)

Goal: calculate relic density with SE in the full MSSM

THE SOMMERFELD EFFECT

one-loop $\propto \alpha \frac{m_\chi}{m_\phi}$

force Bohr radius

$$m_{\chi}v^2 \lesssim \alpha^2 m_{\chi}$$

kinetic Bohr energy energy

$$\sigma_{\rm SE} = S(v) \, \sigma_0$$

Arkani-Hamed et al. '09

in a special case of Coulomb force: $S(v) = \frac{\pi \alpha/v}{1 - e^{-\pi \alpha/v}} \approx \pi \frac{\alpha}{v}$

THE SOMMERFELD EFFECT FROM EW INTERACTIONS

Hisano et al. '04,'06

force carriers in the MSSM:

at TeV scale \Rightarrow generically effect of $\mathcal{O}(1-100\%)$ on top of that resonance structure

 \rightarrow effect of $\mathcal{O}(\text{few})$ for the relic density

Note: for ID the enhancement is significantly stronger!

WHAT IS KNOWN... WITH THE SOMMERFELD ENHANCEMENT

- pure wino, pure higgsino
 Hisano et al. '04,'06
- mixed wino-higgsino (with everything else decoupled)

AH, Iengo, Ullio, '11, Beneke et al. '14

stop and stau co-annihilations

Freitas '07, AH '11, Klasen et al. '14

• gluino co-annihilation

Ellis et al. '15

Minimal DM model

Cirelli et al. '07,'08,'09

Only available tool for the MSSM:

DarkSE package extending the relic density by SE in DarkSUSY

AH, '11

...AND WHAT WAS IMPROVED

Based on a framework by Beneke, Hellmann, Ruiz-Femenia '12, '13 '14:

- 1. the Sommerfeld effect for P- and O(v²) S-wave
- 2. off-diagonal annihilation matrices

not present in DarkSE total effect up to O(10%)

New code (to be public):

- suitable for full MSSM
- using EFT computation of annihilation matrices
- one-loop on-shell mass splittings and running couplings
- possibility of including thermal corrections
- present day annihilation in the halo (for ID)
- accuracy at O(%), dominated by theoretical uncertinities of EFT

> caveat: still no NLO effects...

DETAILS OF THE CALCULATION

Sommerfeld factors computed by solving Schroedinger eq. for $\psi_{ba}^{(L,S)}$

The full cross section:

$$\sigma^{(\chi\chi)_{a} \to \text{ light}} v_{\text{rel}} = S_{a}[\hat{f}_{h}(^{1}S_{0})] \hat{f}_{aa}(^{1}S_{0}) + S_{a}[\hat{f}_{h}(^{3}S_{1})] 3 \hat{f}_{aa}(^{3}S_{1}) + \frac{\vec{p}_{a}^{2}}{M_{a}^{2}} \left(S_{a}[\hat{g}_{\kappa}(^{1}S_{0})] \hat{g}_{aa}(^{1}S_{0}) + S_{a}[\hat{g}_{\kappa}(^{3}S_{1})] 3 \hat{g}_{aa}(^{3}S_{1}) + S_{a}[\frac{\hat{f}(^{1}P_{1})}{M^{2}}] \hat{f}_{aa}(^{1}P_{1}) + S_{a}[\frac{\hat{f}(^{3}P_{\mathcal{J}})}{M^{2}}] \hat{f}_{aa}(^{3}P_{\mathcal{J}}) \right),$$

absorptive parts of the Wilson coefficients of local 4-fermion operators

Sommerfeld factors:
$$S_a[\hat{f}(^{2S+1}L_J)] = \frac{\left[\psi_{ca}^{(L,S)}\right]^* \hat{f}_{bc}^{\chi\chi\chi\to\chi\chi}(^{2S+1}L_J)\psi_{ba}^{(L,S)}}{\hat{f}_{aa}^{\chi\chi\to\chi\chi}(^{2S+1}L_J)}$$

RESULTS

WINO-LIKE CASE AT THE BORN LEVEL

As the sfermion mass decreases the effective annihilation rate is suppressed due to t-channel interference - the correct relic abundance is obtained for masses of around 1.4 TeV*

Higgsino and bino annihilate less strongly - dilute the wino annihilation and reduce the mass to 1.7 and 1.5 TeV respectively*

*for the chosen set of parameters

RESULTS PURE WINO WITH NON-DECOUPLED SFERMIONS

The correct relic density is moved from 1.5-2.1 TeV up to 2.4-2.8 TeV

At 2.4 TeV resonance occurs, for low sfermion masses region with correct RD is resonant

RESULTS WINO-HIGGSINO ADMIXTURE

The correct relic density is moved from 1.7-2.2 TeV up to 1.9-3.3 TeV

The position of the resonance is strongly μ dependent

RESULTS WINO-BINO ADMIXTURE

The correct relic density is moved from 1.5-1.8 TeV up to 1.8-2.9 TeV

The position of the resonance is strongly $M_{\scriptscriptstyle \rm I}$ dependent

RESULTS

WINO-BINO ADMIXTURE - EFFECT OF RESIDUAL PARAMETERS

The position of the resonance is strongly dependent on choice of parameters controlling mixing, i.e. μ and $\tan \beta$

As the mixing is increased the effect is enhanced, i.e. when $|\mu|$ decreases, $\tan \beta$ decreases or $\mu < 0$

CONCLUSIONS

1. Correct relic density for wino-like neutralino in MSSM is obtained for wide range of masses:

2. (Close to) resonance regions give detectable ID signals (already constrained - work in progress...)

Public code including full SE in the MSSM with accuracy for relic density O(%) and running time O(min) to become available

BACKUP SLIDES

LIMITS ON WINO DM

UNCERTAINTIES

AH, I. Cholis, R. Iengo, M. Tavakoli, P. Ullio; JCAP 1407 (2014) 031

RELIC DENSITY

WITH THE SE

Boltzmann equation for the comoving number density;

$$\frac{dY}{dx} = \sqrt{\frac{g_* \pi m_\chi^2}{45G}} \frac{\langle \sigma_{\text{eff}} \mathbf{v} \rangle}{x^2} \left(Y^2 - Y_{\text{eq}}^2 \right)$$

effective thermal averaged annihilation cross-section:

$$\langle \sigma_{\mathrm{eff}} \mathbf{v} \rangle = \sum_{ij} \langle \sigma_{ij} \mathbf{v}_{ij} \rangle \frac{n_i^{\mathrm{eq}} n_j^{\mathrm{eq}}}{n_{\mathrm{eq}}^2}$$

with:
$$\sigma_{ij} = \sum_{X} \sigma(\chi_i \chi_j \to X)$$

$$\langle \sigma_{ ext{eff}} ext{v}
angle = \sum_{ij} S_{ij}(T, ext{v}) \langle \sigma_{ij} ext{v}_{ij}
angle rac{n_i^{ ext{eq}} n_j^{ ext{eq}}}{n_{ ext{eq}}^2}$$

